AD

Affensix

MANUFACTURING METHODS AND TECHNOLOGY (MANTECH) PROGRAM: MANUFACTURING TECHNIQUES FOR A COMPOSITE MAIN ROTOR BLADE FOR THE ADVANCED ATTACK HELICOPTER - APPENDICES

R. KIRALY R.E. HEAD

Hughes Helicopters, Inc.

July 1982

FINAL REPORT

Basic Ordering Number DAAK50-78-G-0004 Delivery Order 003

Approved for public release; distribution unlimited

89 7 28 065

UNITED STATES ARMY AVIATION RESEARCH AND DEVELOPMENT COMMAND, DRDAV-EGX, ST. LOUIS, MO

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

MENTION OF ANY TRADE NAMES OR MANUFACTURERS IN THIS REPORT SHALL NOT BE CONSTRUED AS ADVERTISING NOR AS AN OFFICIAL ENDORSEMENT OR APPROVAL OF SUCH PRODUCTS OR COMPANIES BY THE UNITED STATES GOVERNMENT.

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
USAAVRADCOM TR-83-F-2	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TITLE (and Submite) Manufacturing Methods and Technology (MANTECH) Program: Manufacturing Techniques for a Composite Main Rotor Blade		5. TYPE OF REPORT & PERIOD COVERED Final Report
for the Advanced Attack Helicopter	- Appendicies	6. PERFORMING ORG. REPORT NUMBER HHI 82-143
AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(#)
R. Kiraly R.E. Head		DAAK50-78-G-0004 (D0-0003)
PERFORMING ORGANIZATION NAME AND ADDRESS Hughes Helicopters, Inc.		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Cent nela and Teale Streets Culver City, CA 90230		1827340
U.S. Army Aviation Research and	Development	12. REPORT DATE April 1982
Command, DRDAV-EGX 4300 Goodfellow Blvd, St. Louis, 1	MO 63120	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(II ditterent	trom Controlling Office)	15. SECURITY CLASS. (of this report)
	•	Unclassified
		154. DECLASSIFICATION/DOWNGRADING
6. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distri	ibution unlimite	d.

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report)

Approved for public release; distribution unlimited.

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		Resinc
Rotor Charles	Erosion Protection	Graphite
Blade	Lightning Protection	Fiberglass
Composite Structure:	Tooling	Kevlar
Ballistic Survivability	Fabrication	Nomex · · · · · · · ·

20. ABSTRACT (Continue on reverse side if resecoury and identify by block number)

This manufacturing methods and technology program refined the design for a composite main rotor blade (CMRB) for the AH-64A advanced attack helicopter, perfected the fabrication technology for manufacturing it by wet filament winding process, and demonstrated it through laboratory tests and whirlstand tests. The CMRB replaces the equivalent metal main rotor blade with a weight saving of 24 pounds and a unit production cost saving of \$194, 300 per shipset. Ballistic tolerance against 23mm HEI-T was

SECURITY CLASSIFICATION OF THIS PAGE (Phen Dota Entered)

demonstrated, and satisfactory erosion protection and lightning protection methods were incorporated. Flight test information will be added in a later revision of this report.

This volume contains Appendices that pertain to the basic final report.

Acce	ssion For	1	
NTIS	GRA&I	P	
DTIC	TAB	ā	
Unan	nounced		
Just	ification	-	
 			
Ву			
Distribution/			
Ava	llabili ty	Codes	
	Avail an	d/or	
Dist	Specia	1	
	1 1-	l	
1/1			
r			

UNCLASSIFIED

TABLE OF CONTENTS

	Page
APPENDIX A - STATIC STRESS ANALYSIS	A-1
APPENDIX B - FATIGUE STRESS ANALYSIS	B-1
APPENDIX C - STRUCTURAL ANALYSIS OF A BALLISTICALLY DAMAGED BLADE	C-1
APPENDIX D - DYNAMIC ANALYSIS	D-1
APPENDIX D - DYNAMIC ANALYSIS	le E-1
APPENDIX F - NONDESTRUCTIVE EVALUATION PLAN	F-1
APPENDIX G - FAILURE, MODES, EFFECTS, AND CRITICALITY ANALYSIS	G-1
APPENDIX H - STRESS ANALYSIS	H-1
APPENDIX I - MASS PROPERTIES	I-1
APPENDIX J - AEROELASTICITY AND MECHANICAL STABILITY	J-1
APPENDIX K - RELIABILITY ASSESSMENT	K-1
APPENDIX L - MAINTAINABILITY ASSESSMENT	L-1
APPENDIX M - REFERENCES	. M-1
APPENDIX N - DRAWING LIST FOR THE COMPOSITE MAIN ROTOR BLADE FOR THE AH-64A HELICOPTER	. N-1

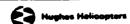
APPENDIX A

STATIC STRESS ANALYSIS OF THE COMPOSITE MAIN ROTOR BLADE FOR THE AH-64A HELICOPTER

PAGE A10.01 OF

		PAGE ATU.UT OF
REPORT TITLE	Static Stress Analysis for the YAH-64 CMRB	REPORT NO. CMRB 79-005
REPARED BY	APC 3/25/82 CHECKED BY	MODEL NO YAH-64
EU BLECT	YAH-64 CMRB Static Analysis	
	TRINGS COMP SCALL MINISTS	· · · · · · · · · · · · · · · · · · ·
	TABLE OF CONTENTS	
Section	<u>1</u>	Page
ATO	References	A10.02
A10	Introduction	A10.03
ATO	Summary of Test Results	A10.04
A15	Margins of Safety	A15.01
A20	CMRB Loads	A20.01
A30	Section Properties	A30.01
A4 0	Blade Root Attach Lugs	A40.01
A50	Basic Section	A50.01
A 51	Trailing Edge Longos	A51.01
A6 0	Swept Tip and Tip Weights	A60.01
	•	
		-

(52


Hughes Helicopters

PASE	A10.02	

REPORT TITLE Static St	ress Analysis for the YAH-64 CMR	REPORT NO CMRB 79-005
PREPARED BY	3/25/82 CHECKED BY	MODEL NO. YAH-64
SUBJECT VALL SALCIND		

REFERENCES

- CMR8-79-004 Basic Loads Report for the Composite Main Rotor Blade for the YAH-64 Advanced Attack Helicopter 1 June 1979 Revised July 1979 Revised March 1982
- Structural Test Report for the CMRB YAH-64/AAH Feb. 1982.
- CMR8 79-041 Safety of Flight Review Airworthiness Substantiation Document Composite Main Rotor Blade for the YAH-64/AAH May 1980, Vol. I and II

REPORT TITLE				REPORT NO
l	Static	Analysis for the	YAH-64 CMRB	CMR8-79-005
PREPARED BY			CHECKED BY	MODEL NO
	APC	3-26-82		YAH-64
SUBJECT	YAH-64	CMRS		

INTRODUCTION

This appendix contains the revised static and fail safe stress analysis of the YAH-64 CMRB.

Based on this analysis, there will be no failure at ultimate load (1.5x limit) and negligible permanent set under limit loads. In addition, with a critical structure element failed (i.e., one lug in four (4) lug joint) the CMRB will be capable of taking limit loads as ultimate without failure. Permanent set is allowed under these conditions.

The CMRB static loads are given in Section 20 starting on Pg. A20.01. Centrifugal Force vs. Blade station at various rotor speeds along with blade moments are listed. Loads are from Reference 1.

Revised section properties are given on Pg. A30.02 in Table 30-1. A plot of section properties is given on Pg. A30.03.

A summary of all testing done on the CMRB, both the original design and the redesigned blade is shown on pg. Alo.04. See also References 2 and 3. Redesign consists of the following:

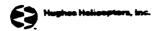
- 1. .048" graphite inner skin; was .010" kevlar.
- 2. Honeycomb supporting the trailing edge skin and swept tip; was Kevlar tubes and Kevlar ribs respectively.
- 3. .075 graphite channel that runs the length of the blade; was .048" Kevlar web.
- 4. Double flange bushing (spool) at the attach lub; was a single flange bushing.

The above changes increased the blade strength, however all static testing was done with specimens which were of the original design.

108M 1794 (REV 4/77)

REPORT TITLE Statio	Analysis for the YAH-64 CMRE	REPORT NO. CMRB - 79 - 005
PREPARED BY APC	3-26-82 CHECKED BY	MODEL NO. YAH-64
SUBJECT YAH-64	CMPR	

INTRODUCTION - (Cont'd)


Pg. A40.01 shows the cross section of the lugs with double flange bushings (spools) now being used on the CMRS to contain the fibers because they tend to spread or flatten out when loaded. This design also allows the fibers to be wound tightly around the bushing resulting in 10% more fibers being used in the make-up of the lug versus the single flange design. This results in a lug of greater strength.

Pg. A40.02 shows the maximum lug load reach during test (specimen had single flange lug bushings). The lug did not fail (specimen club end failed, Ref. 2) and calculations show the lug can withstand a load 40% higher than ultimate. The test substantiated the attach lugs and root portion of the blade. Analysis for the blade's constant section is shown on Pgs. A50.01 and A50.02.

The tip section of the blade has been structually substantated by static test (see Ref. 2). Loading of the tip is shown on Pg. A60.01. The blade tip withstood 356% of limit load.

Structural integrity has been established by analysis and test. For analysis before test see the main body of the report.

SUMMARY OF TESTS RESULTS

This page presents the results of tests conducted on the Composite Main Rotor Blade for the YAH-64 Advanced Attack Helicopter. The tests were conducted at the Hughes Helicopters Inc. Structures Test Laboratory, Culver City, CA., between January 1980 and August 1981.

One each, Swept Tip specimens were subjected to Static, Ground-Air-Ground, and Fatigue loading. One each, Root-Midspan specimens were subjected to Static and Ground-Air-Ground loading. Five Root specimens were tested under fatigue loading.

Significant test results are as follows:

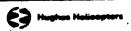
- 1. Swept Tip Static, GAG and Fatigue tests.
 - a. 100% radial limit load achieved on swept tip section without failure or permanent set.
 - b. 100% vertical limit load and ultimate load on aft tip weight box without failure or permanent set. 211% radical limit load achieved on swept tip assembly without failure.
 - c. APT radial limit load achieved on fwd. and aft tip weight boxes without failure.
 - d. 108,000 cycles; representing eight times three GAG cycles per hour for a service life of 4500 hours achieved without failure.

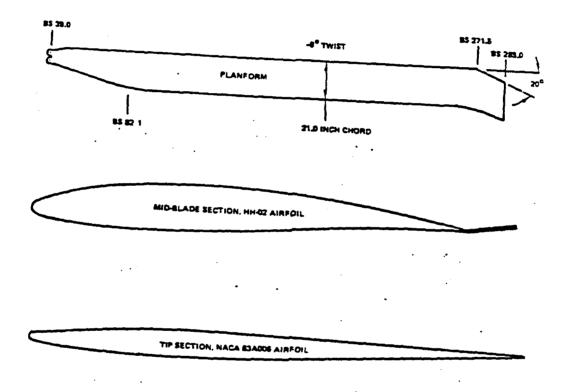
2. Root-Midspan Static and GAG tests.

- a. 100% radial limit load applied statically without yielding or permanent set. Failure at the club end occurred at 149% limit load.
- b. 108,000 cycles, representing eight times three GAG cycles per hour for a service life of 4500 hours achieved without failure. Lug failed at 33,200 cycles of 125% GAG load.

3. Root Fatigue Tests

- a. Tests conducted on specimens 1 and 2 were considered invalid due to overheating of the test specimen resulting from an excessive test cyclic load rate.
- b. A premature failure of specimen No. 3 indicated insufficient fatigue strength of the blade attachment lugs as originally designed.
- c. Specimen 4, which incorporated design configuration changes yielded greatly improved fatigue strength in the lug area although lateral expansion of the lugs was still present.
- expansion of the lugs was still present.

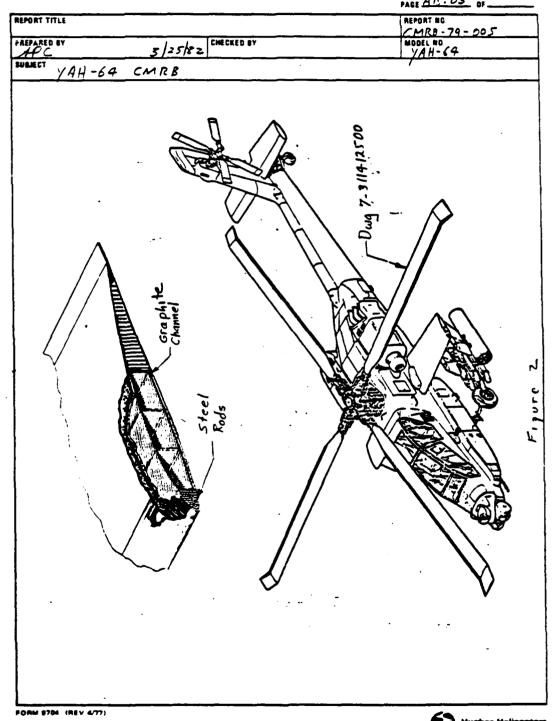

 d. Specimen 5, with shimmed lugs which simulated the additional lateral restraint of the longo fibers obtainable from the future use of double flanged lug bushings showed no damage or lateral expansion of the lugs after 947,700 cycles at increased load levels. The last 50,400 cycles were obtained at the mean I hour load level. The required number of cycles at the I hour load level is 17,340. The root end of the blade could still support centrifugal force when the test was terminated due to increased deflections.

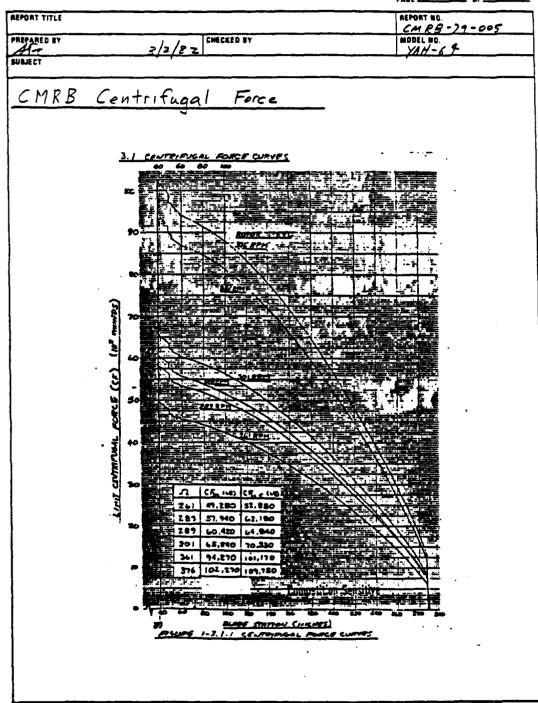

PAGE 1-15.01 DF

REPORT TITLE YAH-64 Sta	tic and Fatigue Analysis	REPORT NO. CM RE -79 - 005
PREPARED BY APC	3/9/82 CHECKED BY	MODEL NO. YAH-64
SUBJECT VALLES CHER		

MINIMUM MARGINS OF SAFETY

Station	Load Condition	Type of Stress	Margin of Safety
39 Attach Lugs	n _z =3.5,V _f =180 Kn RPM=289	Tension in Kevlar Windings	.40
191.7 Constant Section	n _z =3.5, V _f =180 Kn RP M= 289	Compression in Kevlar spar longos in the constant section	.06
87 Constant Section	n ₂ =3.5, V _f =180 Kn RPM-289	Shear due to torsion in ±45 ⁰ layers of the constant section	.05
84 Constant Section	RPM = 0 Max Torque V=0 n _z =1.0	Compression in Kevlar spar longos after the T.E. longos have buckled	High
270 Blade Tip	RPM = 376 V _f =150 Kn n _z =3.5	Tension load applied to tip weight housings and blade tip	High




YAH-64 CMRB Geometry

Figure

PAGE A15. 03 OF ____

A-10

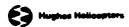
FORM 9704 (REV 4/77)

(Hughes Holicopters

PAGE A 20.02 DF

REPORT TITLE			REPORT NO. CM RB - 77 - 005
PREPARED BY	3/9/82	CHECKED BY	MODEL NO. VAH-6 C
SUBJECT			

CMRB Loods


Main Rotor Blade Preliminary Limit Loads

Power On

 $n_z = 3.5$, V = 180 km, RPM = 289

r	M _F (in-lb)		H _C (in-lb)		H _T (in-lb)	
(in.)	Mean	Cyclic	Mean	Cyclic	Nean	Cyclic
11.0		×.4	l.———	'		42000
25.0	+8400	36400		i.a.———	-15000	42000
34.5	+4400	49700	60000	60900	-15000	33000
44.5	-8800	55300	55900	79400	-12000	33000
59.5	-5000	48700	50000	106000	- 900 0	32000
87.0	-3500	26300	37700	133000	- 8000	32000
121.9	-5500	23600	29100	149000	- 5600	32800
156.8	-6000	28300	19900	136000	- 4300	32000
191.7	-8000	42900	12400	97500	- 3500	32000
226.6	-4000	44000	6600	60100	- 2200	22000
256.0	+2000	25200	1200	22900	- 1700	10500
273.0	+4500	14800	300	8300	- 900	4300

NOTE. Lds in tables are from Ref 1

REPORT TITLE		REPORT NO. CMRB - 79-005
PREPARED BY	3 /3/82 CHECKED BY	MODEL NO.
SUBJECT		


CMRB Loads

Main Rotor Blade Preliminary Limit Loads

Power Off, (Limit Rotor Speed)

 $n_2 = 3.5$, V = 150 km, RPM = 376

r	Mp (in-lb)		<u>К</u> е (in-lb)		M _T (in-lb)	
(in.)	Mean	Cyclic	Hean	Cyclic	Mean	Cyclic
11.0 25.0	- 3600	10200			-11000 N.A.	18000
34.5	- 4000	13900	-29000	42700	-11000	14100
44.5	- 1510	15400	-26600	55700	- 9100	14300
59.5	- 940	13600	-23800	74300	- 7100	13500
87.0	- 4000	7300	-18000	93300	- 5800	13400
121.9 156.8	- 7600 -11500	6600 7900	-13900 - 9500	104000 95300	- 4200	13300
191.7	-13100	12000	- 5900	68400	- 3200	13500
226.6	- 9300	12300	- 3100	42100	- 2900	13400
256.0	+ 6100	7000	- 570	16100	- 2600	9300
273.0	+ 2700	4100	- 140	5800	- 1600	4500
1		1			- 650	1900

PAGE # 20.04 of ____

REPORT TITLE		REPORT NO. CM RR- 79-05
PREPAGED BY	3/3/82 CHECKED BY	MODEL NO YAH - 64
SUBJECT		7

CMRB Loads

Main Rotor Blade Preliminary Limit Loads

Power Off

 $n_z = 3.5$, V = 150 km, RPM = 301

r (in.)	Mr (in-lb)		(12	M _c -1b)	H _T (in-lb)	
	Hean	Cyclic	Mean	Cyclic	Mean	Cyclic
11.0		н и				
25.0	+8400	23700		м.	A.—14000	23800
34.5	+4400	32400	-25700	54400		
44.5	-8800	36000	-23900	71000	-14000	18600
59.5	-5000	31700	-21400	94800	-11500	18900
87.C	-3500	17100	-16100	119000	- 9100	17800
121.9	-5500	15400	-12500	133000	- 7400	17700
156.8]				- 5400	17500
	-6000	18400	- 8500	122000	- 4100	17800
191.7	-8000	27900	- 5300	87200	- 3700	17700
226.6	-4000	28600	- 2800	53700	- 3300	12300
256.0	+2000	16400	- 500	20500	- 2100	6000
273.0	+4500	9600	- 130	7400	- 800	2500

PAGE A20.05 OF ___

PREPARED BY

PREPARED BY

CHECKED BY

CHECKED BY

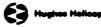
MODEL NO.

CARB-74-005

MODEL NO.

AH-64

CMRB Loads


Main Rotor Blade Preliminary Limit Loads

Power Off, (Design Minimum Rotor Speed)

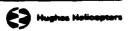
 $n_z = 3.3$, V = 150 km, EPH = 261

(in.)	My (in-lb)		M _c (in-lb)		M _T (in-lb)	
	Hean	Cyclic	Hean	Cyclic	Mean	Cyclic
11.0 25.0	+8400	36400			-14000	30000
34.5	+4400	49700	-23000	58000	-14000	23500
44.5 59.5	-8800 -5000	55300 48700	-21400 -19200	72000	-11500	23700
87.0	-3500	26300	-14500	127000	- 9100 - 7400	22400
121.9	-5500 -6000	23600 28300	-11200 - 7600	142000	- 5400	22000
191.7	-8000	42900	- 4750	92900	- 4100 - 3700	22400 22300
226.6 256.0	-4000 +2000	44000 25200	- 2500 - 460	57200 21800	- 3300	15400
273.0	+4500	14800	- 115	7900	- 2100 - 800	7500 3100

PORM 9794 (REV 4/77)

REPORT TITLE		REPORT NO. CMEB - 79 - 005
PREPARED BY	3/3/82 CHECKED BY	MODEL WO. YAH-64
SUBJECT		

CMRB Loads


Main Rotor Blade Preliminary Limit Loads

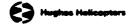
Power On

 $n_z = 2.5$, V = 204 km, RPM = 289

r (in.)	Mr (in-lb)		M _c (in-ib)		MT (in-lb)	
	Hean	Cyclic	Hean	Cyclic	Mean	Cyclic
11.0		—— ж		-	-14000	20900
25.0	- 820	29600		 	H.A	1
34.5	-11900	40500 .	6000Ó	46300	1	1
44.5	- 8600	45000	55900	60400	-14000	17500
				1	-11500	17700
59.5	- 6100	39600	50000	80600	- 9100	16700
87.0	- 9000	21400	37700	101000	- 7400	16600
121.9	- 7900	19200	29100	113000		
156.8	- 6200	23000	19900	103000	- 5400	16400
			· ·	74100	- 4100	16700
191.7	- 8300	34900	12400	/4100	- 3700	16700
226.6	- 5200	35800	6600	45700	- 3300	11500
256.0	0	20500	1200	17400		
273.0	+ 1480	12000	300	6300	- 2100	5600
	1	1	ł	1	- 800	2300

PORM 8704 (REV 4/77)

REPORT TITLE		REPORT NO. CMR9-77-005
PREMARED BY	2/3 /BZ CHECKED BY	Model No VAH -6 4
SUBJECT		


CMRB Loods

Main Rotor Blade Preliminary Limit Loads

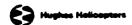
Power On, (Limit Rotor Speed)

 $n_z = 3.5$, V = 180 km, RPM = 361

1 (in.)	Mp (in-lb)		H _c (1n-lb)		M _T (in-lb)	
	Mean	Cyclic	lieto	Cyclic	Nesn	Cyclic
11.0		, N.	A.——			
25.0	-3600	15200			-14000	1 17000
34.5	-4000	20800	34000	48700	•	
44.5	-1510	23100	31700	44300	-14000	13300
59.5	- 940	20300	28300	59200	-11500	13500
87.0	-4000	11000	21400	74300	- 9100	12700
121.9	-7600	9900	16500	83200	- 7400	12600
156.8	-11500	11800	11300	75900	- 5400	12500
191_7	-13100	17900	7000	54400	- 4100	12700
226.6	-9300	18300	3700	33600	- 3700	12600
256.0	+6100	10500	700	12800	- 3300	8800
273.0	+2700	6200	200	4600	- 2100	4300
2,3,0	72,00	5200	200	4000	- 800	1800

REPORT TITLE		REPORT NO. CMRB-79-005
PREPARED BY	3/3/82 CHECKED BY	MODEL NO. YAH - C4-
SUBJECT		7

CMRB Loads


Main Rotor Blade Preliminary Limit Loads

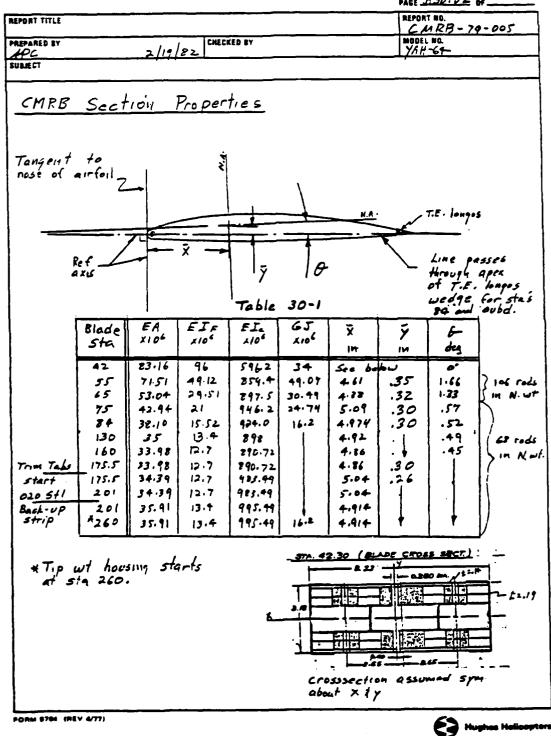
(Zero Rotor Speed, Maximum Torque)

 $n_z = 1.0$, V = 0 km, RPM = 0

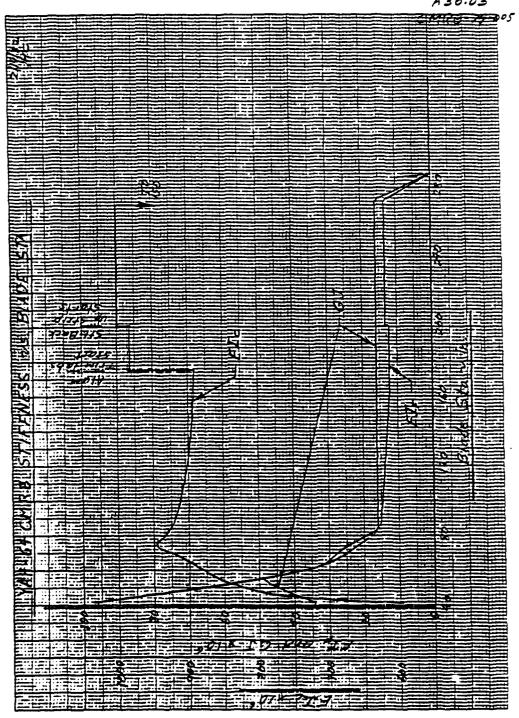
r (in.)	Hp (in-lb)		: -ai)	H _c (in-lb)		r (b)
	Hean*	Cyclic	Hean	Cyclic	Nean	Cyclic
11.0	26500	Negli-	R.A.	Negli-	Negli-	Negli- gible
34.5	19600	gible	79900	gible	nible	gible
44.5	18100		74400			
59.5	16100		66600	ĺ		
87.0	12660		50200			
121.85	8910		38800			
156.75	5780		26500			
191.65	3270		16500			
226,55	1390		8800			
256.0	320	1	1600			
273.0	40		400	. ↓]	

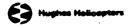
^{* 1}g static droop moment with respect to a horizontal reference plane.

PAGE 430.01 DF

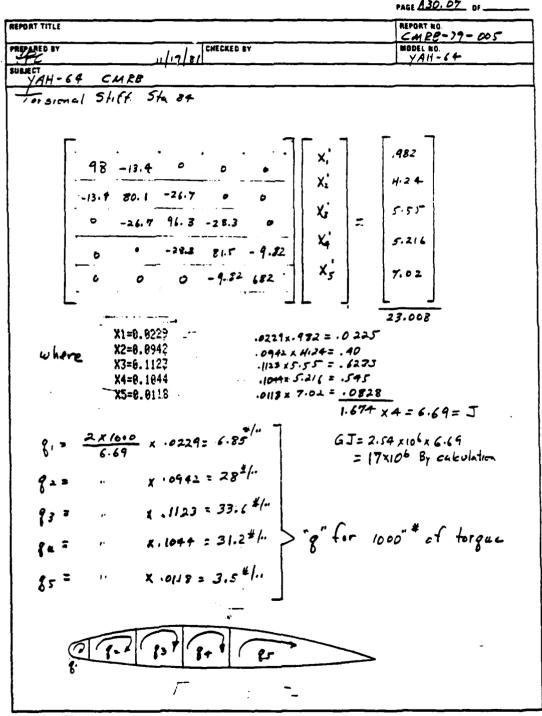

		PAGE
REPORT TITLE		REPORT NO. CURE-79-00-
PREPARED BY	2 /23 /82 CHECKED BY	MODEL NO. VAH-64
SUBJECT		

SECTION PROPERTIES


Section properties are listed in Table 30-1 in this section. EI_{C} , EI_{f} and GJ are shown graphically on pageA30.03. On pageA30.07 the shear flows due to a 1000 in-1b torque applied to the blade are shown. On page A30.08 is listed the test data from which the calculated torsional stiffness of the blade was verified.


PAGE 430.02 OF

PAGE #30.04 OF REPORT TITLE REPORT NO. YAH-64 CMRR TEISISH Stiffness - Sta 4.7 05 diM= ? 0.35 ÑF=_/ ? FIBER NO. F162. F= ? 0.54 2.6 06 2.6 06 NW+ orea = .8626 142 Red area = (693) 17 672 .467 $V_f = \frac{.464}{.8426} = .54$ 1690357.616 € ET= $V_m = \frac{.8626 - .464}{.8626} = .46$ 1168075.837 $\frac{5Km}{A_{i} = \frac{-52 + 1/3}{2} \times 1.19 = .982 \text{ m}^{2}}$ GLT= 556064, 6481 $\frac{S}{E} = \frac{1.19 + .52 + 1.17}{.024} + \frac{1.13}{.032} = 120^{-} + 35.3 = 155.3$ $G = \frac{4F^2}{4/4} = \frac{4x.972^2}{155.3} 2.532 \times 10^6 = .063 \times 10^6$ Rods + Rosin GJ= = Tx.4054 x .56 x 106 = .024 x 106 Total GJ for Call 1 (063 + .024) x106 = 4x.982 2 532 x106 (=)=(1.13+1.28+.52+1.17)/042.=98 £= .092



PAGE A30.05 OF REPORT TITLE CMR8-79-005 PREPARED BY CHECKED BY MODEL NO YAH - 64 SUBJECT
YAH-GH CNRB Toreici Stiffness. Sta 84 Shr ca for hominate of Main Box 90° .006 Ekin 245° .024 tube , =450, 032 y = 1024 x 2 532 x 015-+ .048 x 4.421 x .054 + .104 x .2349 x .13 + .032 x 2.532 x .148 (.024+.032) I.532 + .104x.2349 + .048x 4.421 J=.084 Cell Areas 2.35 2.35 1.56 1.55 1.55 1.55 1.48 1.02 767 A,= .982 $A_2 = \frac{49 + 1.37 \times 96 + \frac{1.35 + 1.59}{2} \times 1.02 + \frac{1.59 + 1.71}{2} \cdot 17 = 1.123 + 1.499 + 1.617 = 4.24$ $A_3 = \frac{1.71 + 1.72}{2} \times 1.55 + \frac{1.52 + 1.57}{2} \times 1.55 = 2.736 + 2.813 = 5.549$ $A_{7} = \frac{1.3/4 \cdot 1.70}{2} \times 1.557 + \frac{1.7071.50}{2} \times 1.56 = 2.72 + 2.496 = 5.216$ $A_5 = \frac{1.60 + 1.20}{2} \times 2.35 + \frac{1.2 + .75}{2} \times 2.35 + \frac{.75 \times 3.23}{2} = 7.02$

JORM 9704 (REV 4'77)

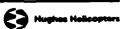
REPORT TITLE		REPORT NO. CMRS->9-005
REPARED BY	11/14/31 CHECKED BY	MODEL NO. YAH - 64
VELECT		
Torsichal S	+16. Sta 84	
	10-3.0 - 3.1 - 3.1 - 3.1 - 5.	8.53
_	1 19 2 2 2 3 2 2 4 2 2 5	**
	1 41 2 25 3 25 4 25 5	
	£, £, £,	±4.
Effective 5	kin Thickness	
£, = .032 4	2.532 x.104 + 4.421 x.048 + .024	+ + · 006 = 2.531 = · 150
t2=.064	$5 = \frac{4.421}{2.532} \times 0.075 + 0.032 = 0.000$	1.63) \$4 = .0245
(£), = 98		
$\left(\frac{\mathcal{E}}{2}\right)_2 = \frac{\mathcal{E}}{.15} + \frac{1}{.15}$	$\frac{.99}{042 + .032} + \frac{1.71}{.064} = 80.1$	
$\left(\frac{5}{\pm}\right)_3 = \frac{6 \cdot 2}{\cdot 15}$	$+\frac{1.71+1.81}{0.64}=96.3$	
$\begin{pmatrix} \underline{5} \\ \underline{t} \end{pmatrix}_{q} = \frac{1.3}{.00}$	$\frac{71}{64} + \frac{1.6}{.163} + \frac{6.2}{.15} = 79.4$	
$\left(\frac{s}{t}\right)_5 = \frac{1.6}{.163}$	$+\frac{2x8.53}{.0254}=682$	
$\binom{5}{2}_{1,2} = \frac{.99}{.042+}$	= 13·H ·032	
$\binom{5}{t/23} = \frac{1.77}{.064}$	= 26.7	
(=) = 1.31	= 28.3	
$\left(\frac{3}{4}\right)_{45} = \frac{1.6}{163}$	= 9.82	
1- 1109		•

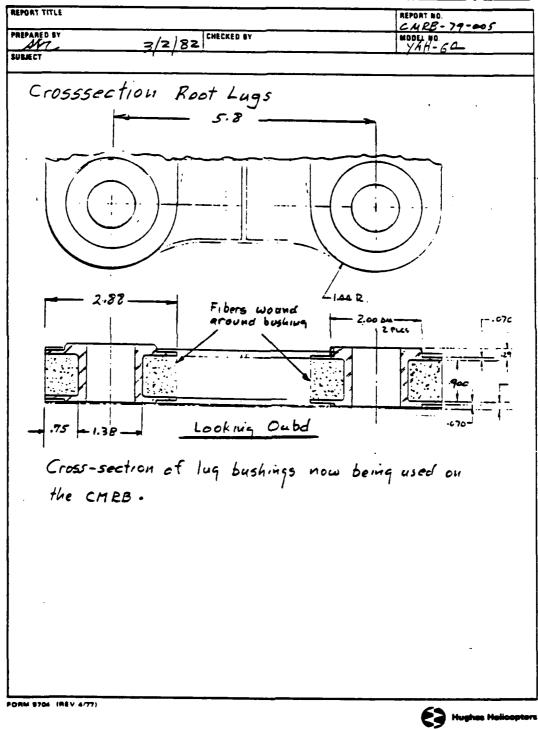
AT TITLE		REPORT NO. CMRB - 77 - 005
MED BY	11 19 81 CHECKED BY	MODEL NO. YAH-64
у А' H - 64	CMRB	
	Stiffness Test. Data	
l	25.50 -7.50	2/55 4/50 6/34 5/63 1/23 1/23
	13 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	2 4 2 3 0 2 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	245 245 245 257 257 257 257 257 257 257 25	24/28 24/57 24/55 24/55 24/55 24/55 24/57 24/57 24/57 24/57
. 9 7.		
12,000 's	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
		12 12 12 12 12 12 12 12 12 12 12 12 12 1
, ,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Table 30-2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25/20
(a)	M 73 7 9 2 9 2 5 0 7	
7a 6k	W. Y. 7 9 9 9 9 7 9 7 9 9	かんかいとうしん まん
01	トベー シール・ツー ローンいいしょ	1000 1000 1000 1000 1000 1000 1000 100
BLADE	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00 - 00 - 00 00 00 00 00 00 00 00 00 00
i	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	280 - 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
25005	12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	255 25 25 25 25 25 25 25 25 25 25 25 25
A/M 025219	P 1	
5 N		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
2057E : 7-3	45 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3,43 3	7	50000000
626	23 0 % 3 3 3 3 8 3 5 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,220,000,000
'. ~	`	· ·

Hughes Helicopters

PORT TITLE		eurovia au	REPORT NO. CMRB -> 4-005"
MEET VAIL	11/20/81	CHECKED BA	MODEL NO. YAH-64
7 MH - 64	CMRB		
5ta 84 to		de Torsional Sti	thess
Ref Torsi	onal Stif	fness Data	
$= \frac{[4016] + (5^{\circ}24' + 5^{\circ}27')/2] + [6^{\circ}43' - (5^{\circ}27' + 5^{\circ}32')/2]}{2}$ $= (9.12.75' = 1.2125^{\circ}$			
77.			
5		90	
27,	*	. X/	
<u>ئ</u>	}=[2028'+(2040')]+[7052'-(2040'+2052')] 2	16.2 ×10 ⁶ Measured	
. 2	+	11	
	4	જ	•
+ ~	9	2 ×	
- N	7 27	178	
)00	
2 2	7	57.3 x 12000 (176 - 84) 5.1170- 1.2125	
= fold: + (5°24' + 5° = 1° 12.75' = 1.2125°		· w)	
5.7	2028'+(2°40')	27.	
+ + + + + + + + + + + + + + + + + + +	" (20	•	
12.7	+ 80 +	to 176 S=	
7 0	ر ا	, %	
~ 11	•	_	
74	Ma(176		
)	55 c	40 A	
Are torsionals: Def Sia 84	Ave torsional Dof Sta 176	G J 54	
20	Av. Do	9	

PORM 9794 (REV 4/77)


REPORT TITLE		REPORT NO CA1 RIS - 79 - 005
PREPARED BY	11 19 PI CHECKED BY	MODEL NO. YAH - 64
EURIECT / AH-64	CMRB	
Sta 84 to	69, Blade Torsional Stiffne	<u>:55</u>
Ref Torsion	nal Stiffness Data	
	_	-


Ave torsional
$$3 = \frac{[-5^{\circ}16' + (6^{\circ}0' + 5^{\circ}59')/2] + [6^{\circ}47' - (6^{\circ}5' + 5^{\circ}59')/2]}{2}$$

Def Sta 69

$$GJ = \frac{57.3 \times 12000(84-69)}{1.2125 - .7375} = 21.7 \times 10^6$$
 Stx 84 +669

Ave torsional
$$= \frac{\left[-5^{\circ}59' + (6^{\circ}30' + 6^{\circ}28')/2\right] + \left[7^{\circ} - (6^{\circ}28' + 6^{\circ}33')/2\right]}{2}$$

= .4958°

EPORT TITLE	REPORT NO CMRS - 79 - 005
REPARED BY ### CHECKED BY	MODEL NO.
UBLECT	YAH-62
Part I and C I I I I Charles	
Root Lugs; Calculated Strength Con	apared with Static Test Applied Lo
R= 187, 869# ult Ref 3 P. A-1	
Max lug Load > 277x187869 140	干世! 世 ,
Max Lug Load = 3.77x187869 = 149 static test = 2x5.8 = 150	5.8 P ₇ 0 - 87
3 talle /est	+87
= 60, A50 * Ref. 2	1 1
For the above load the specimen	→ □ □
For the above load the specimen failed at the club end (stails) not a which are at sta 39. Ref 2 Fig. 4	t the lugs
	h- 2 - 2 l
$K = \frac{1.3 \left(\frac{R}{r} \right)^2 + .7}{\frac{R}{r} + 1}$ Strength reduction due to wraping Keu around lug bushing Ref 3 P. 30.12 vol.	y factor
R= R/r + 1 due to wraping Keu	CMRB Lug
Ref 3 P. 30.12 Vol.	Reduction factor
Allowable tension) = { [162500] : [1.3 (14)	14/49)2+.77) Femormental etc
stress 3=/[162500]+ 1.44/	1.80 = 63,200 PSI
	- ,,
Lug Strength = 2x.9x.75 x 63,200 =	· 85,600 [#]
7	•
Calculated lug, strength 15 42%	lo higher than what
Calculated lug strength is 42°, was applied during static test;	The calculated M.S. 15:
711+ 1407 150	MC = 8560040
VIT Lug 3 = 150 x 60450=6,000 #	$M5 = \frac{85600}{61,000} - 1 = \frac{.40}{ult}$
.,,	Attach
	Lugs
	-

A-30

(Hughes Helicopters

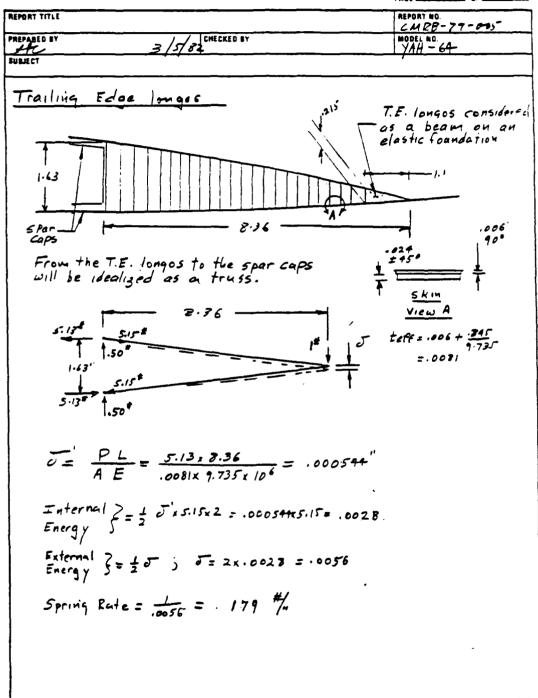
A 50.01

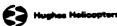
		PAGE <u>A 50.01</u> OF
PORT TITLE		REPORT NO.
EPARED BY	3/5/82 CHECKED BY	MODEL NO VAH-64
YAH-64 C	mre	
Sta 191.	7 Pt. "B"	
	Longos, Critical Be	nding Section
5.	2.36	u.
ref Table a-	-1	
	100°, 289 RPM	Sign Convention
MF = -800	o ± 42900 .95	+ Mr - Com. Upper Surface
	0 ± 97500 " #	+ Mc-Com Trailing Edge
M7 = 3,900	232,000	+ Torsion - Nose Up
Its assures the second	med the the longos nding and C.F. load t45° loyers resist	74z.33
Ezen= 35	800 = 1041 M. Tan.	VIEW A Vers
Ef = - \$000	0×.95 = 598 M1/Tan.	' S
Ec = - 1240	$\frac{03.2.36}{984} + \frac{(21/4 - 5.0)}{}$	1+)35800 x 2.36 = -12 M=/ com
Ealt = 42	900 x.95 + 97500 x 2.5	FE, Kou, Nee.SF
Max Ax. Tan	n Str = (1041+724-12+3	3443) 10.66 = 55,400 ps; Ton
Min Ax St	r= (1041 + 598 - 12 - 3443)10.66 = - 19400 psi com
F±0 = 162	500x . 8 = 130,000 psi	- Reduction factor Environmental etc
	00x .8 = 30, 700 psi	
ν;:	55	$M5 = \frac{30800}{1.5 \times 19400} - 1 = \frac{.06}{6 \times 10^{-10}}$ Find CK .
		Sper longes
ORM 9704 (REV 4/77)		63 Huntur Malineau

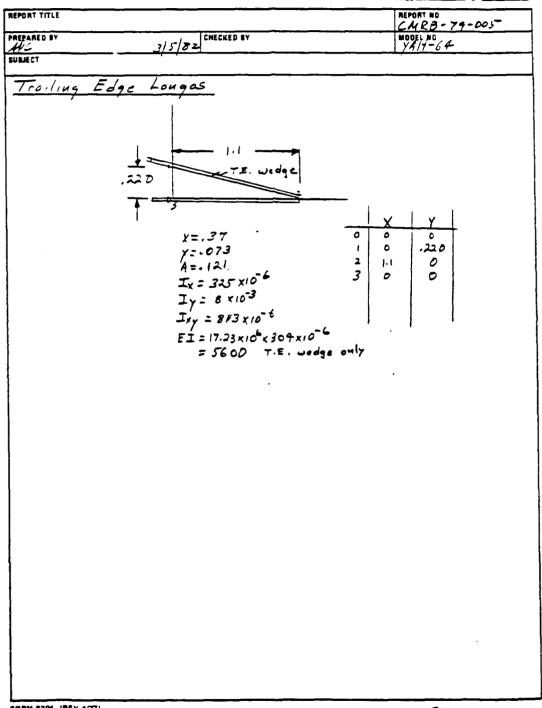
		PAGE <u>#50.02</u> of
REPORT TITLE		CU 28 -79 - 6-05
PREPARED BY	CHECKED BY	MODEL NO. VAH - 6.4
SUBJECT VAH - CMRB	-	
,		
Sta 87 (k. ±	15° layers	
	± 45° loyers resist	t shear due to
$t_{kev ar} = .032 + .024$	= .03 •	
tgroph = .048°	***	
9 = 33.6 x (8000+32 P.30.07	2016 #/" lim	Reduction factor
P. 30.07 ,	2016" " 011	Enviormental effects
Max Tor	f+4	
the ± 45° layers	f } = (.048×37098+	.056 x 15600) . 8
,	= 2123 =/1 820.11	B' 100.06
	•	· ,
	M	$15 = \frac{2/23}{20/6} - 1 = \frac{.05}{}$
		Shr. Ck
Stress applied to	SPAC CAR longs	±45° loyers
during static tes	+	
	190.02	
Stress applied to ?=	187869 149 × 10.66 = 5	2,000 PSI
,,,,,	\ P. 3a.02	•
Ratio of stress appli during test and cakul ultimate stress	$\frac{ed}{ed} = \frac{52000}{1.5 \times 55,400} = .63$	3
Marine Sites	A50.01	
	,,,	
		•

PORM 9704 (REV 4/77)

Hughes Holicopters


REPORT TITLE			REPORT NO
			CMRB-79-005
PREPARED BY APC	3/26/82	CHECKED BY	MODEL NO.
SUBJECT YAH-64 CM	R8		


TRAILING EDGE


The buckling load for the trailing edge is calculated assuming it to be a column on an elastic foundation. Comparing the buckling load with the applied load it can be seen that the trailing edge will not buckle at limit load for the Maximum Rotor Torque condition.

The analysis shows that the spar caps can resist the remaining bending load after the trailing edge buckles above limit load. That is the instant the trailing edge buckles elastically at a stress of 16,900 psi; the spar caps will pick up the remaining load preventing any inelastic buckling of the trailing edge. Since only elastic buckling occurs, no failure results.

							PAI	E 7137.0	or
EPORT TITLE		,-, - - -					16	ORT NG. MRB - 74	7-005
EPARED BY	•	6/29/29	CHECKED	BY			20	DEL NO. Y	H-60
CIII.	C A2 A	2 /3	<u> </u>						·
/// 67	2717	· D							
Calculation o	f I .	بر . لدوما	14 5	kin a	nd 7	r.F. a	7 <i>65UM</i>	ed Bu	dled
								-	
							·		
	-	•	A-	944 Re 13.7	+ CMRE	• 77-99)			·
		ر م ا	,			-	·		
		,,,,	<u> - </u>	= -09 6 ₁ F	pr 1 8 4		_		.
		. -	≠	= •99 6 ₁	= 10.66,	L=9.16			
		-1-35	+-		9.16		-1		
		:		- ·	·			-: - :	
								 	·· ···
						- ·			<u>-</u> :
		<u> </u>					·		
	1	A	E	ΕΛ	X	EAX	EAX2	I .	• -
• -	T+am		=	En		EAL	EAX		_ '-
	1 1	.844	18.7	15.73	.45	1449	14.99	0 1	
			ļ			_			
	2	1.91	10.66			114.0	673.8	35.13	i
				35.07		129	688.8	135.13	
	·· · ·· ·	•	: -			1	• .		
E_ Longo = 2	x . 099	x 9.163	- 10 1C	. 12 f 13	•			·	
Longo =	/2			- 65.11				· - ·	
7 18	9		-					4	· · ·
X= -12	07	- 3.6							·
• • •								··	
ET = 190.1	2 4 6	57 77 -	3.18	r 12.a	=	349	• • • •	·- ·- ·	
EI = 135.1	, .			1 1		• ,	1-	9.14	-
					,	:	· ==		
	To acc								1.
IF/90 = (90x	1.79)	9.16 x	.099 x	10.66 x	2			.	
//4/	.=/			•	•			1	-
	·	: <u>.</u>				-		:099, 0°	' -;·
= 12.5	н	enqus	only						nax distanci Hopen Icii
	·- 	• •	•		• •-				caled
ł									•
1									
DRM 8704 (REV 4/77)									
Charles and August St. ()									Hughes Helic

REPORT TITLE		REPORT NO. CNRB-79-005
PREMARED BY	3/5/82 CMECKED BY	MODEL NO YAH-64
SUBJECT YAH-64 CM		
Trailing Ea		
71011119		_
$M = \left[\frac{K l^4}{\pi^4 E^7} \right]$	$\int_{0}^{\sqrt{4}} \left[\frac{179 \times (288 - 82)^{4}}{174 \times 5600} \right] = 2$	Ref = 8 P. 97 Their body of Ref.
L// E=_	T 11. X 3800	of Re.
$P_{cr} = \frac{2m^2}{L^2}$	$\frac{\pi^2 EI}{206^2} = \frac{2 \times .28 \cdot 2 \pi^2 \times 5600}{206^2} = \frac{1}{3}$	2042
T.E. Bucklin	ng stress = 2042/121 = 16,900	P 51
	1	6
	.40	
		13280
	13.03	790
	,	Ref 3 P. 9
С Г		V.1 I
$+ = \frac{54795}{92}$	$\frac{7 \times 13.03}{4} + \frac{790 \times .4}{15.52}$ 17.23	Jero Rotor Speed Max Torque
15 7	-	
= 13,660	PSI	
	М.	$5 = \frac{16900}{13700} - 1 = \frac{.23}{}$
		13,000 Limit
		Stability
		shows that for limit was
	•	the T.B. longos will not buckle.
		Dir Hai abenig.
		-
ORM 9704 (REV 4/77)		69

Hughes Helicopters

REPORT TITLE		REPORT NO. CMRB - 79 - 805
PREPARED BY	3/5/82 CHECKED BY	MODEL NO YAH-64
SUBJECT VAH-CM	PR	

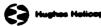
Trailing Edge Longes

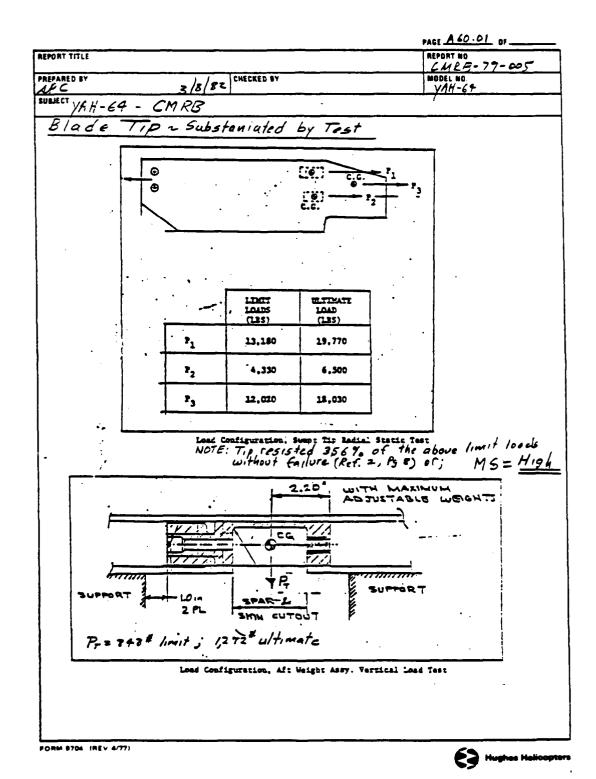
-5.53-

Stress at Pl. L' due to 1.23 times = [54795x 5.53 + 790x.70] 10.66 x1.23 = 4,800 psi Limit Lond

Stress at Pt L' due to balance of = $\frac{54795 \times 6.81}{349} + \frac{790 \times 7}{12.54} (1.5-1.23) \times 10.46$ ultimate load = 3204 PSI

Stress at Pt. "L" after } = 4800 + 3204 = 8000 ps 1 com. buckled


Allowable com. stress } = . 8 x 78500 = 30 800 psi for Kenlar, Vf = . 55 } = . 8 x 78500 = 30 800 psi Reduction factor. Environmental effects etc.


MS = 30800 - 1 = High

8000 ABOVE LIMIT LAND

This shows that after the

This shows that after the TE. longos have buckled the spar cap longos will resist the remaining bonding and that ultimater can be applied to the blade without failure.

APPENDIX B

FATIGUE ANALYSIS OF THE COMPOSITE MAIN ROTOR BLADE FOR THE AH-64A HELICOPTER

PAGE B10.01 OF

REPORT TITL				REPORT NO
L	Fatique	e Analysis for the	YAH-64 CMRB	CMRB-79-006
PREPARED B			CHECKEC BY	MODEL NO.
	APC	3/25/82		YAH-64
SUBJECT	CMR8 F	atigue Analysis		

TABLE OF CONTENTS

Section		Page
B10	References	B10.02
B10	Introduction	B10.03
B10	Summary of Component Lives	B10.04
B10	Summary of Test Results	B10.05
B15	Root Fatigue Test Results and Applied Loads	B15.01
B15	Swept Tip Test Results and Applied Loads	B15.02
820	Fatigue Test Results Plotted	B20.01
B30	CMRB and Metal Blade Flight Allowables Compared	B30.01
B40	Graphs Substantiating CMRB Fatigue Strength Compared to Blade Flight Loads and Metal Blade Allowables	B40.01

PAGE 810.02	0#
-------------	----

REPORT TITLE	Fatigue Analysis for the YAH-64 CMRB	MEPORY NO. CMRB 79-006
PREPARED BY	APC 3/25/82 CHECKEB BY	MODEL NO.
SUBJECT	CMRB - Fatique Analysis	

REFERENCES

- 1. CMRB-79-004 Basic Loads Report for the Composite Main Rotor Blade for the YAH-64 Advanced Attack Helicopter 1 June 1979 Revised July 1979 Revised March 1982
- Structural Test Report for the CMRB YAH-64/AAH Feb. 1982
- CMRB 79-041 Safety of Flight Review Airworthiness Substantiation Document Composite Main Rotor Blade for the YAH-64/AAH May 1980, Vol. I and II

	B10.03		
PAGE:		OF	

REPORT TITL	Fatigue Analysis for	the YAH-64 CMR8	REPORT NO. CMRB-79-006
PREPARED BY		CHECKED BY	MODEL NO. YAH-64
SUBJECT	CMRB Fatigue Analysi	\$	

INTRODUCTION

Fatigue life of the CMR8 is equal to or greater than 4500 hours as required per Specification Number AMC-SS-AAH-H10000. Also with a critical element failed the CMR8 is capable of a minimum of thirty (30) minutes of flight after initial failure.

The revised fatigue life of the CMRB has been substantiated by a combination of analysis and component fatigue tests. A summary of test results is shown on Pg. Alo.05. Fatigue analysis of the blade before testing is presented in the main body of the report.

Five root specimens were tested. The first two specimens were root-midspan specimens. The purpose being to test the blades root-end and mid-span simultaneously. During testing of the specimens 1 and 2 premature lug failures occurred at 8000 and 24000 respectively due to the high rate of cyclic loading (approximately 13 Hz), which cause heating of the lugs and an undue rise in temperature leading to early failure.

13-Hz was the resonant frequency of the specimen.

A premature failure of specimen No. 3 indicated insufficient fatigue strength of the blade attachment lugs as originally designed. Specimen 4, which incorporated design configuration changes yielded greatly improved fatigue strength in the lug area although lateral expansion of the lugs was still present.

The present design of the blade lugs has a double flange bushing (spool) to contain the fibers because they tend to spread or flatten out when loaded. The previous tested blade specimens had bushings with only a single flange. To structurally simulate the current design in the fatigue test, shims were placed between the link assembly and the blade lugs for specimen 5.

Specimen 5, with shimmed lugs showed no damage or lateral expansion of the lugs after 947,700 cycles at increased load levels. The last 50,400 cycles were obtained at the mean 1 hour load level. The required number of cycles at the 1 hour load level is 17,340. The root end of the blade could still support centrifugal force when the test was terminated due to increased deflections.

PAGE B10.03.1 DF

REPORT TITLE		REPORT NO.
Fatique	Analysis for the YAH-64 CMR8	CMRS-79-005
PREPARED BY APC	3/26/82 CHECKED BY	MODEL NO.
SUBJECT CMRB Fat	igue Analysis	

INTRODUCTION - (Cont'd)

Other changes to the original design that increase the fatigue strength are as follows:

- 1. .048" graphite inner skin; was .010" Kevlar.
- 2. Honeycomb supporting the trailing edge skin and swept tip; was Kevlar tubes and Kevlar ribs respectively.
- 3. .075 graphite channel that runs the length of the blade; was .048 Kevlar web.

A summary of loads and test results is given on Pg. B15.01 for specimens 3, 4, and 5; and on Pg. B10.05 is a summary of all testing done on the CMRB.

One swept tip was tested. Loads and results are shown on Pg. B15.02. The swept tip is of original design with .010" Kevlar inner skin and Kevlar ribs supporting the skin. The present design has honeycomb supporting the skin and is stronger.

From test results shown on Pg. B15.01 and Pg. B15.02, flight L-N fatigue curves are developed starting on Pg. B20.01. For flap bending and chord bending curves, the most conservative combination of 45° and 0° curve shapes is used. This is because either the 45° or 0° fibers may fail first. For torsion, only the 0° curve shape is used since torsion is resisted as axial load in the $\pm 45^{\circ}$ fibers. The attach lug curve shape is based on the 0° fibers. The mean test curve at the endurance limit is reduced as follows:

L-N CURVE SCATTER REDUCTION FACTORS

Number of Fatigue Test Specimens	Percent of Mean L-N Curve Used			
1	50%			
2	65%			
3	75%			
4 or more	Statistical analysis (M-3 <i>G</i> 7)			

REPORT TITLE		 		REPORT NO.
	Fatiqu	e Analysis for th	e YAH-64 CMRB	CMRB-79-006
PREPARED BY	APC	3/26/62	CHECKED BA	MODEL NO. YAH-64
SUBJECT	CMRB F	atique Analysis		-

INTRODUCTION - (Cont'd)

Values obtained for endurance limit, 10 hour and 1 hour flight allowables are shown on Pg. B30.01 and compared to metal blade allowables.

Starting on Pg. B40.01 the values on Pg. B30.01 for endurance limit and one hour are shown graphically along with the applied blade load curve. From these curves the fatigue strength of the CMRB can be compared to the metal blade and the load applied to the blade.

PORM 8704 (REV 4/77)

PAGE 810.04 OF

TIGUE Analysis for	- the YAH-64 CA	188	MODEL NO.
مر 3/25	/82		YAH-64
CMRB Fatique	Analysis		
1			
ALPOST TITLE PATTICUE ANALY	SIS FOR THE TAN-64 ADVANCED		PAGE - F
	MPOSITE MAIN ROTOR BLADE		C-503 -79-006
1 APC 11-5-79	. CHEEKLS 67		WOREL MA
COS - FATIGUE AKAL	rs is		
			·
	STREMENT OF CONTROL	TRE LIVER	
	compiration	PACE	2150
		<u> </u>	>4500 EOURS
BOOT LUCS	VEIGHTED FATIGUE	30.20	
. DUT LUCA	CAC	30.21	100,000 HOURS
· ·	(OME LING FAILED)	30.22	HORE TRAN 30 KENTES
VIBRATION ABSORBUR	FATIGUE .	31.13 31.17	DOTOTE
		31.19	
CTOZE+OLL BOCL	VEZGETED PATIGUE	40.04	DOTATE
57A 55	PATIGOE WEIGHTED	50.04	> 4500 NOTES
STA 84	Marianto Parian	60.04	> 4500 BOURS
STA 160	VELOTOD PATTOR	70.03	> 4500 EOURS
STA 192	WELGITED FATT GOT	70.06	> 4500 HOURS
TEP COMPONENTS	GAE	80.01	DOWN
			·
	ı	•	
ŀ			
ı			,
4			·
1	•		
			1
L			

3

Hughes Helicopters

B-8

SUMMARY OF TESTS RESULTS

This page presents the results of tests conducted on the Composite Main Rotor Blade for the YAH-64 Advanced Attack Helicopter. The tests were conducted at the Hughes Helicopters Inc. Structures Test Laboratory, Culver City, CA., between January 1980 and August 1981.

One each, Swept Tip specimens were subjected to Static, Ground-Air-Ground, and Fatigue loading. One each, Root-Midspan specimens were subjected to Static and Ground-Air-Ground loading. Five Root specimens were tested under fatigue loading.

Significant test results are as follows:

- 1. Swept Tip Static, GAG and Fatigue tests.
 - a. 100% radial limit load achieved on swept tip section without failure or permanent set.
 - b. 100% vertical limit load and ultimate load on aft tip weight box without failure or permanent set. 211% radical limit load achieved on swept tip assembly without failure.
 - c. 3562 radial limit load achieved on fwd. and aft tip weight boxes without failure.
 - d. 108,000 cycles, representing eight times three GAG cycles per hour for a service life of 4500 hours achieved without failure.
- 2. Root-Midspan Static and GAG tests.
 - a. 100% radial limit load applied statically without yielding or permanent set. Failure at the club end occurred at 149% limit load.
 - b. 108,000 cycles, representing eight times three GAG cycles per hour for a service life of 4500 hours achieved without failure. Lug failed at 33,200 cycles of 125% GAG load.
- 3. Root Fatigue Tests
 - a. Tests conducted on specimens 1 and 2 were considered invalid due to overheating of the test specimen resulting from an excessive test cyclic load rate.
 - b. A premature failure of specimen No. 3 indicated insufficient fatigue strength of the blade attachment lugs as originally designed.
 - c. Specimen 4, which incorporated design configuration changes yielded greatly improved fatigue strength in the lug area although lateral expansion of the lugs was still present.
 - d. Specimen 5, with shimmed lugs which simulated the additional lateral restraint of the longo fibers obtainable from the future use of double flanged lug bushings showed no damage or lateral expansion of the lugs after 947,700 cycles at increased load levels. The last 50,400 cycles were obtained at the mean I hour load level. The required number of cycles at the I hour load level is 17,340. The root end of the blade could still support centrifugal force when the test was terminated due to increased deflections.

+ 4	TLE PUE PBY	_A	nal	¥ 51				- 1	YA CHECK	# -	6 4 *	<u>_</u>		<u> </u>	188	REPORT NO. CMRB-7 MODEL NO. YAH-64	9-006
CT C	<u>_M</u>		F	_	, q y		H	714	lys Res	1 5	Its		er	d	Applied L		
<u> </u>	Pgs		78.	<i>3</i>	7	Re	f							_			gned above
5	Sosigued	1003	9 7 . 1	: 54500		32,000			57.000	l l	1 22,407	20,328	- 60420 48	Second	7.00 % 00 % 00 % 011 % 010 % 0	E 242 12	of airful. Redesigner airful. None of the abover
	2nd Redesigned	POCIMENISM	1 1			31,500	1		19300	87	8 3	20921	A	First	(124, Repetred Skin, Sheaved Repensed.	2KIN BUCK	T.F. of of air
4	t Redosigned	1002	4.7.7	43,950	\$ 40,360	\$ 30,800	ı.	00/58	4 74300	-	æ.			Second	. ,	er izerien Keiliet H estrier	ed tubes
	15t R	5/20	443	1 39,200		30,000	i		\$ 55, 900	ase's1 ;	009'(1)	13,000		First	26 ~901×1	Freg 2 Asma No dema	Air An
6	Original	7/0	.4x11.2	+ 15,600		00 1:1 4	1		1 22,360	1						Roversed Reating for	design had kevlar , has graphile inner ,
		SIM		\$ 39,200	: 32,100	35,200	\$ 50,400	\$ 51,900	\$ 55,900	8396	2, 2,990	680	- 8102409		buigoog En N ao 1°EEL	Freg 2 HJ Upper fud I retated	Original design
Specimon	رد د الهابطب		* C**	6	÷	S W		•	29 W	39	المان	22	14.0	Run			NOTE: 0

REPORT TITLE
Fatigue Analysis for the VAH-64 CMRB

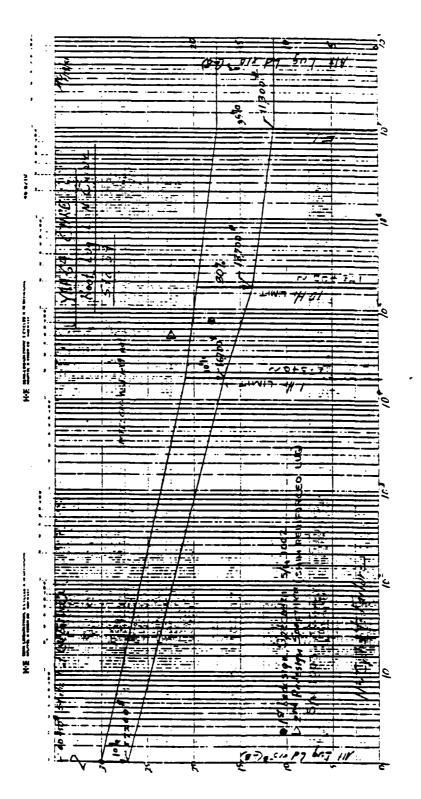
PREPARED BY
AFC
2/26/82 CHECKED BY
SUBJECT
CMRB Fatigue Analysis

REPORT NO.
CMRB-79-006

MODEL NO.
YAH-64

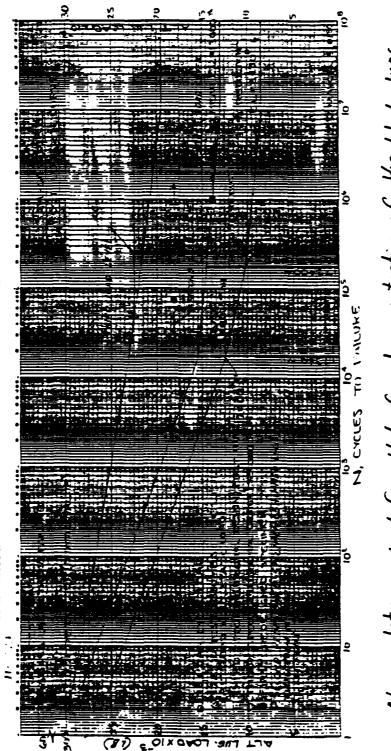
Swept Tip Fatigue Results and Applied Loads
Ref 3 B 24

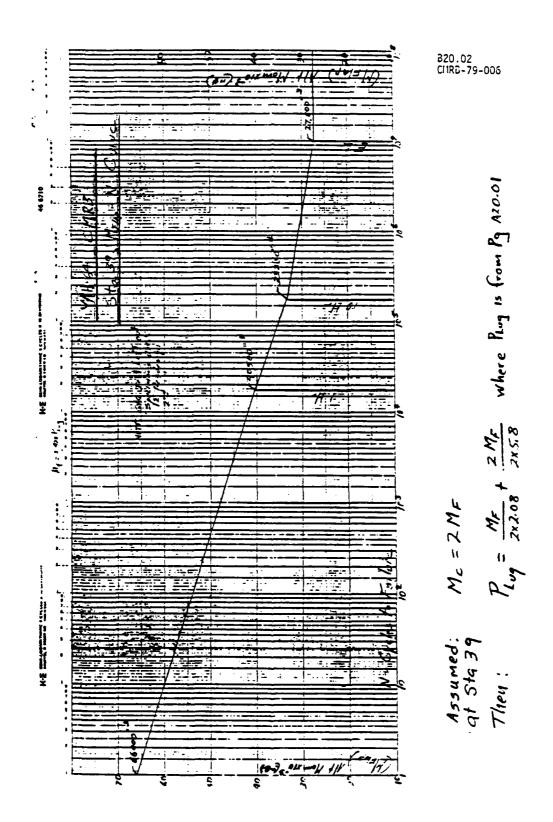
Test Results, Swept Tip Fatigue Test

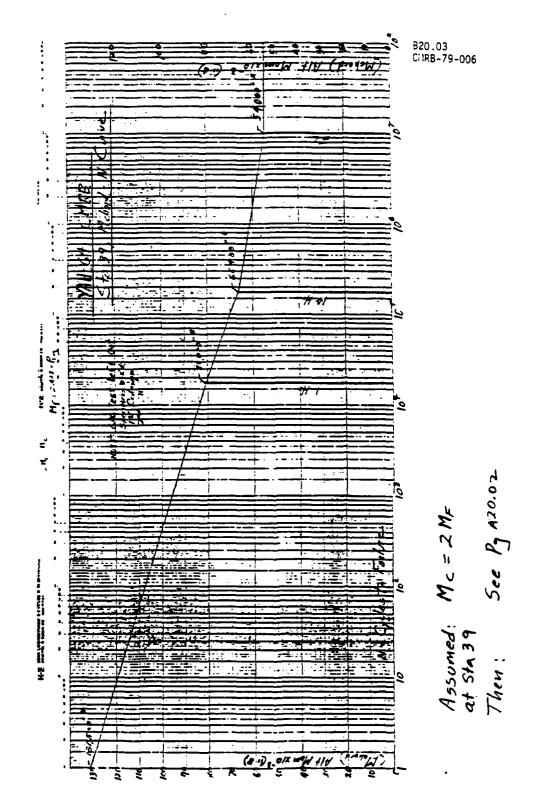

1	FAT	IGUE HOMENTS	(IN-LB.)					
TOYD	Sta.	266.5.	Sta. 260	COMMENTS				
LEVEL	EVEL Helap Chord To		Horsion	COMMENTS				
1	+9227	±5670	±1100	1 X 10 CYCLES. NO FAILURE				
2	<u>+</u> 11534	<u>+</u> 7088	<u>+</u> 1376	1 I 10 ⁶ CYCLES. NO FAILURE				
3	<u>+</u> 13841	<u>+</u> 8505	<u>+</u> 1650	162,000 CYCLES. NO FAILURE TEST TERMINATED.				

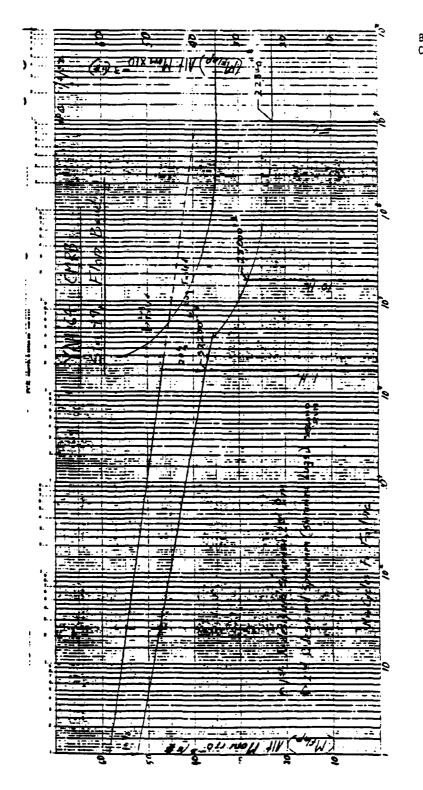
Fatigue Bending Homent Distribution, Load Level 1

		Swept Tip :	fatigue Te
CYCLES	STATION (IN.)	M _C +(1n1b)	H_ +(in1b)
5600	250	17013	16653
	260	4186	10680
	266.5	2670	9227
22590	250	17532	16965
	260	4069	10679
	266.5	5670	9227
29300	250	15268	16742
	260 266.5	N.A. 5670	10679 9227

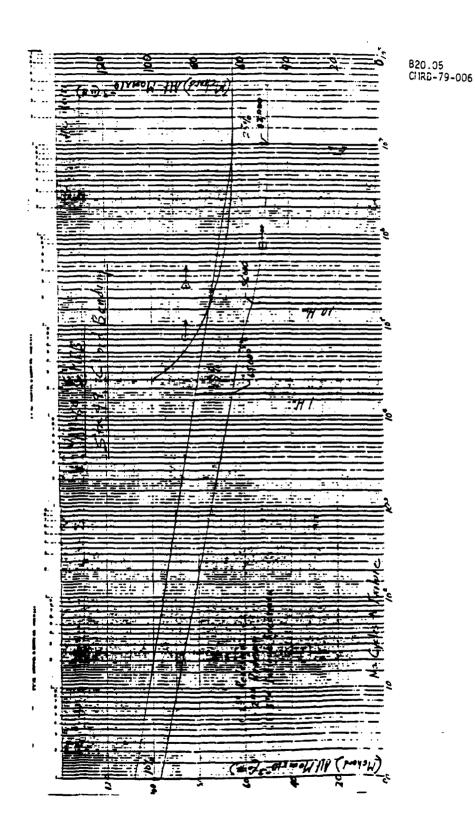

NOTE: Specimen was the original design (kevler inner skin). Present design has an graphite inner skin which has greater strength.

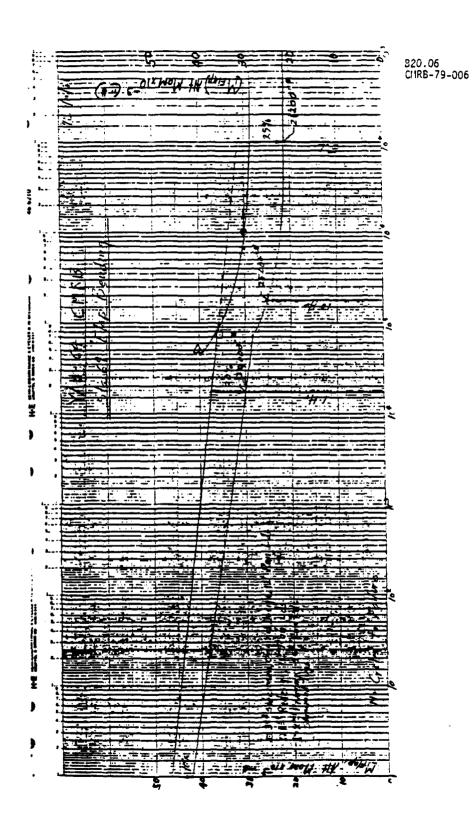


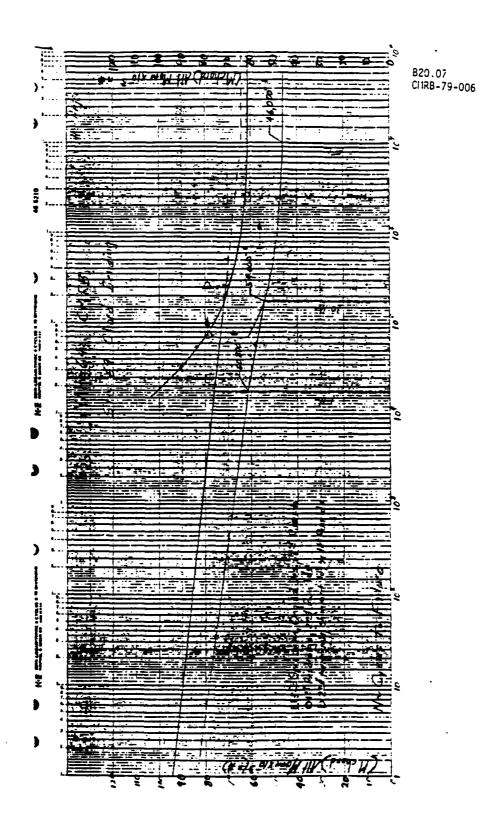

B20.01 CMRB-79-006

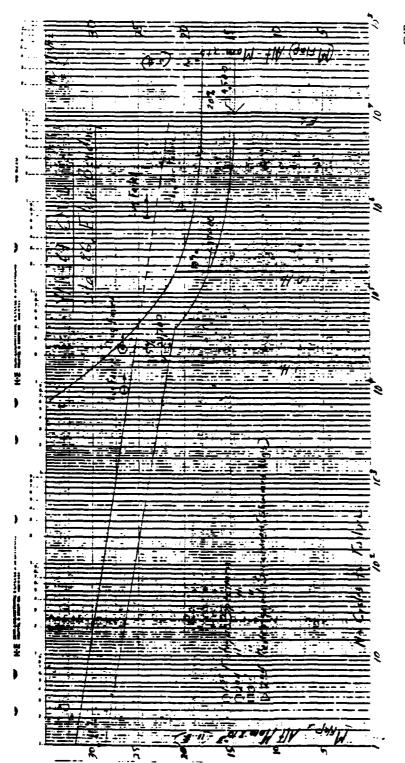


Above data is just for added information on testing of the blade lugs.

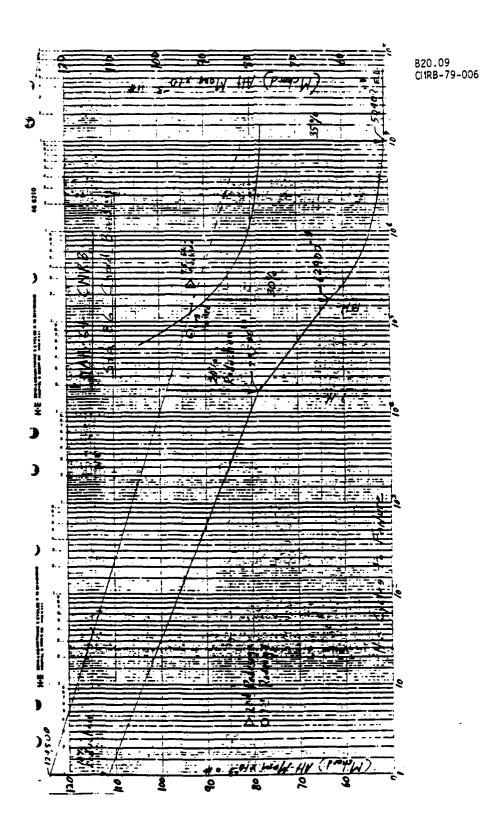


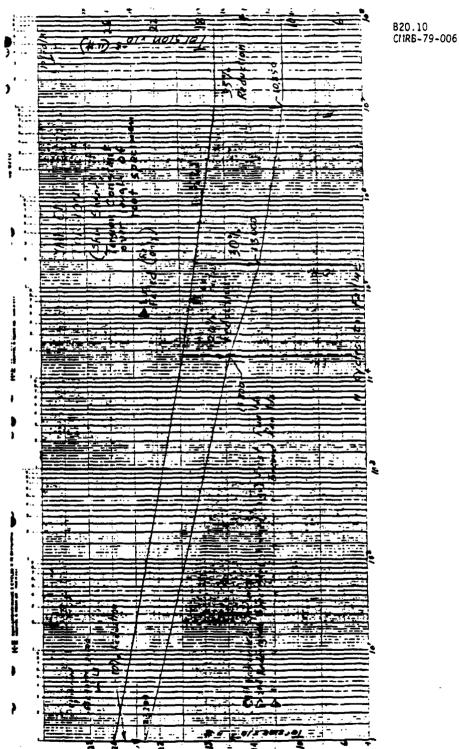


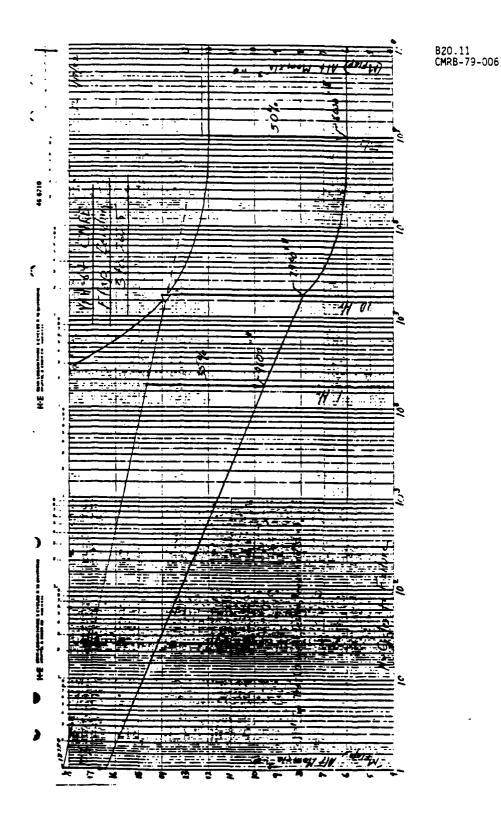

B-15



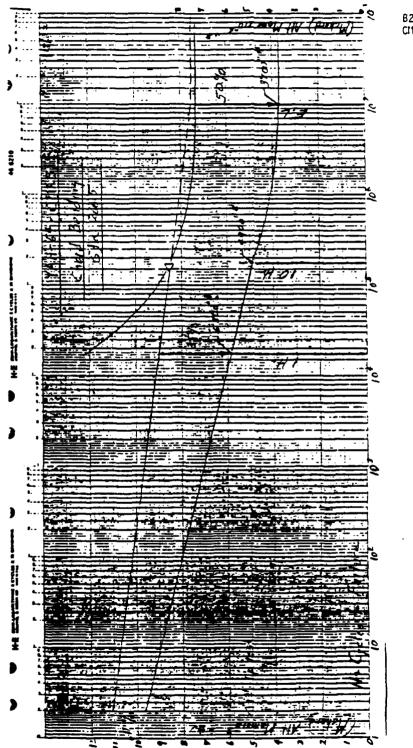
B20.04 CMRB-79-006



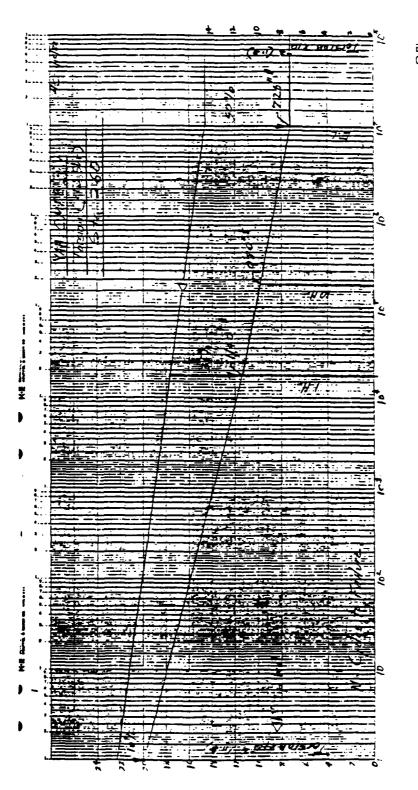




B20.08 CHRE-79-006

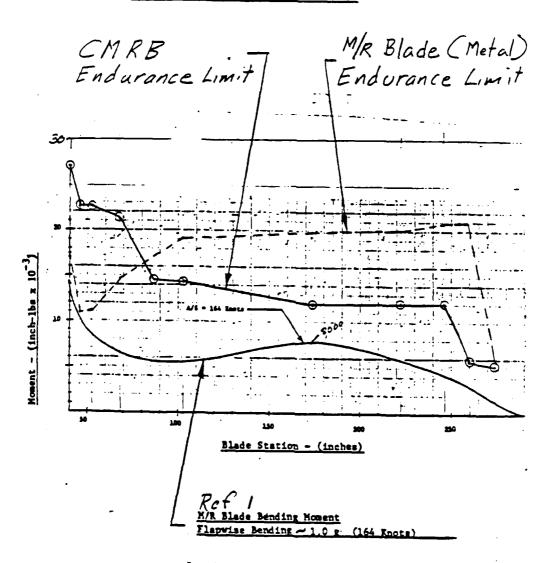


B-21



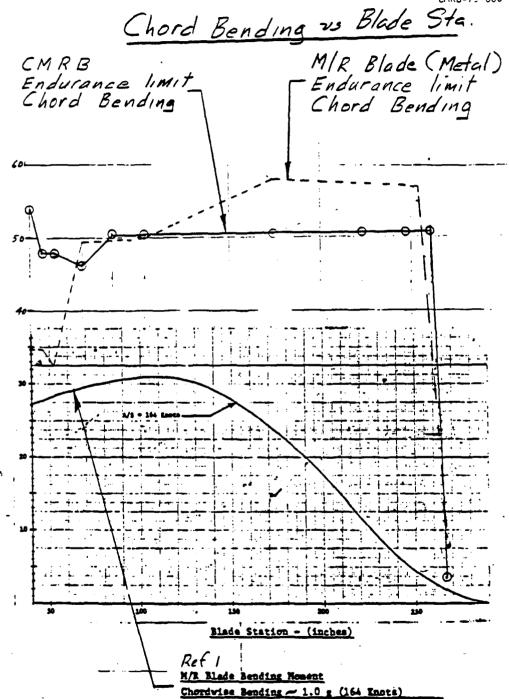
B-23

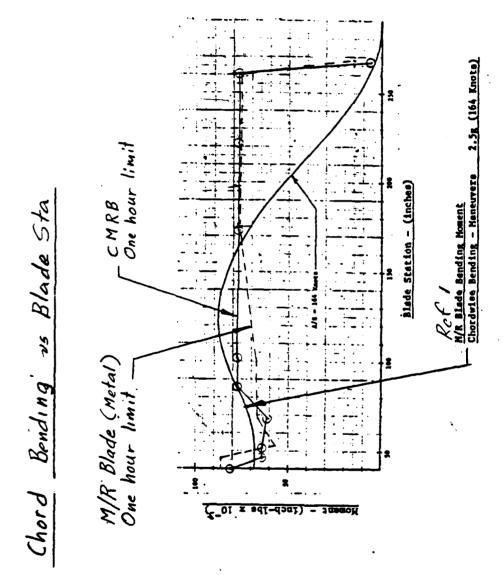
B20-12 CI1RE-79-006

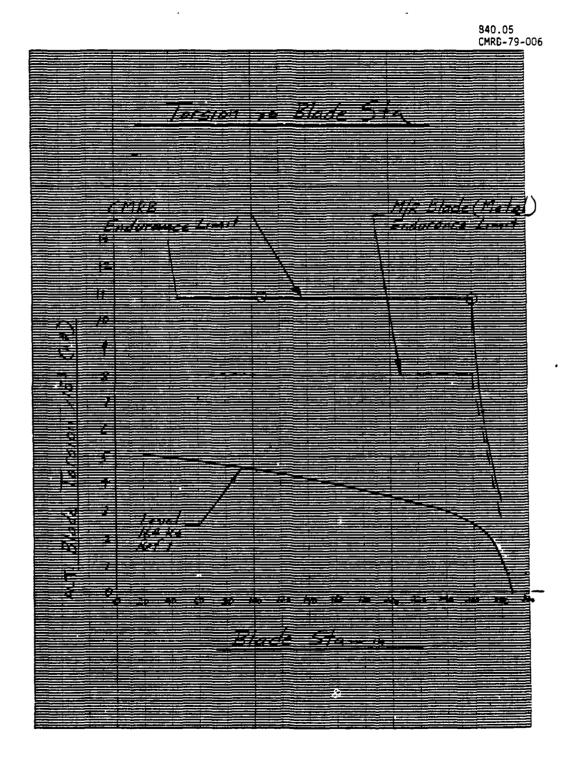

B20.13 CMRB-79-006

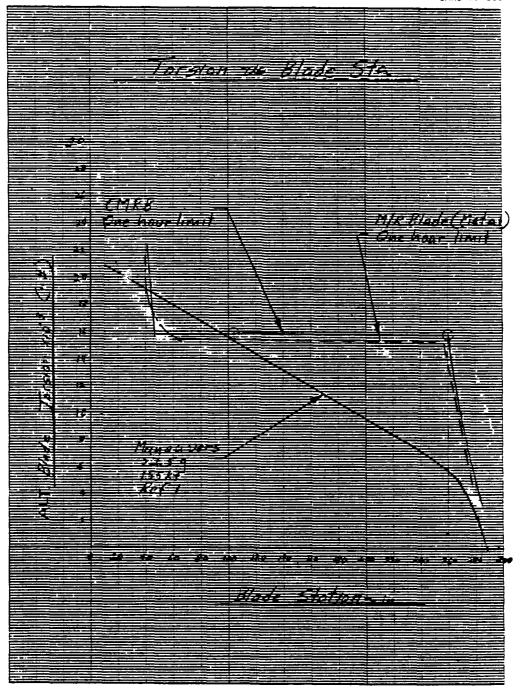
COMPARISON OF THE COMPOSITE M/R BLADE

ALLOW ABLES WITH THE METAL BLADE Allowable · Loads (Cyclic) Blade Composite Metal Blade Endurance 10 Hour 1 Hour 10 Hour 1 House Emalance Sta Mom Limit +رمصمل (تا بر) Me 27.000 33.200 40500 17.430 1 25,800 43.580. 39. 54.000 66.400 81.000 34362 51600 Mc 87/60 22800 28000 37200 10 8451 Me 16.130 27240 46 Mc 48000 | 56000 | 65000 | 34.860 | 51600 37160 22700 | 28000 | 37200 || 11,300 14 · 1/2 12090 19,970 51.3 48000 56000 65,000 Mc M 22800 28000 37200 53 Mc 48000 56000 65,000 32.470 34755 57390 Mx 21200 25000 1 30 000 14.725 15.700 26,000 61 16000 54000 60800 H962 51500 166400 Μz 13920 16700 20300 190001 20,500 33,400 103 ·Mc 50400 | 62900 | 78500 50000 52 000 67000 Mc 12,000 14300 18,000 19900 21,500 42 35,000° 179 Me 50400 62,900 78,500 58 100 60,450 77,800 112 000 14300 13000 20.400 4 22,000 35,900 222 50,400 62900 78500 14300 18000 12000 21.100 22,800 **%** 37,100 246 57.000 M. 50400 62900 78500 59300 76 400 260 6000 7900 9600 22 800 4 21100 37,100 3700 266.5 4900 5800 5300 Ho 6.770 8400 4090 4900 9300 274 M. 110,250 13,000 15800 104.5 Mt 2000 8.640 14,000


^{# 45°} and 0° Curve shapes used # C° Curve Shape used







APPENDIX C

STRUCTURAL ANALYSIS OF A BALLISTICALLY
DAMAGED COMPOSITE MAIN ROTOR
BLADE FOR THE
AH-64A HELICOPTER

C-2

SEPORT TITLE	REPORT NO.	
Static Stress Analysis for the	YAH-64 AAH CMRB CMRR-7	9-005
PREPARED BY D. Mancill 4-7-82 CHECK	MODEL NO.	,

INTRODUCTION

This appendix contains the structural analysis of the ballistically damaged YAH-64 CMRB.

Based on this analysis, there will be no failure at the limit vulnerability condition (N_Z = 2.0g, V = 150 km, RPM 289). The fatigue life of the CMRB after sustaining ballistic damage is greater than 30 minutes.

The damage model is based on an impact by a 23mm high explosive incendiary (HEI) projectile. Extent of the ballistic damage is based on experience with the metal YAH-64 main rotor blade and the composite multi-tubular spar main rotor blade for the AH-1G.

Hughes Helicopters

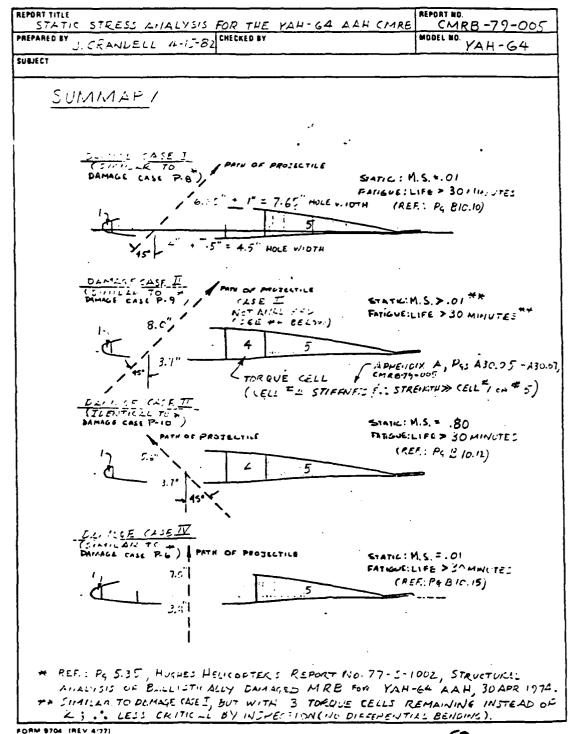


Table C-1. Main Rotor Blade Preliminary Vulnerability Loads

 $n_z = 2.0g$, V = 150 km, RPM = 289

r	M (in-		! -ni)	(_c -1b)		MT -1b)
(in.)	Mean	Cyclic	Mean	Cyclic	Mean	Cyclic
11.0		1 N	.a.— <u> </u>		-8200	15900
25.0	+3500	20200		N	.A	13900
34.5	+5600	27600	32000	50200	-8200	8500
44.5	+3900	30800	29800	52500	-6800	8600
59.5	+ 900	27100	26700	55300	1	1
87.0	-2900	14700	20100	69400	-5300	8100
121.9	-4300	13200	15500	77800	-4300	8000
156.8	-5700	15800	10600	71000	-3100	7900 Cort.
191.7*	-5700	24000	6600	50900	-2400	8100 SECT
226.6	-3200	24600	3500	31400	-2200	8000 00
256.0	+4100	14100	640	12000	-1900	5600
-	+1700		160	4300	-1200	2700
273.0	41/00	8300	190	4300	- 500	1110

SIGN CONVENTION:

- · (+) MF COMPRESSION IN UPPER SURFACE
 - (+) ME ~ COMPRESSION IN TRAILING FOGE
 - (+) M ~ NOSEUP

* CRITICAL STATION DUE TO THE HIGHEST COMBINIATION OF MOMENTS AND TORSION, GOVERNED BY FLANWISE BENUNG.

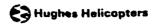
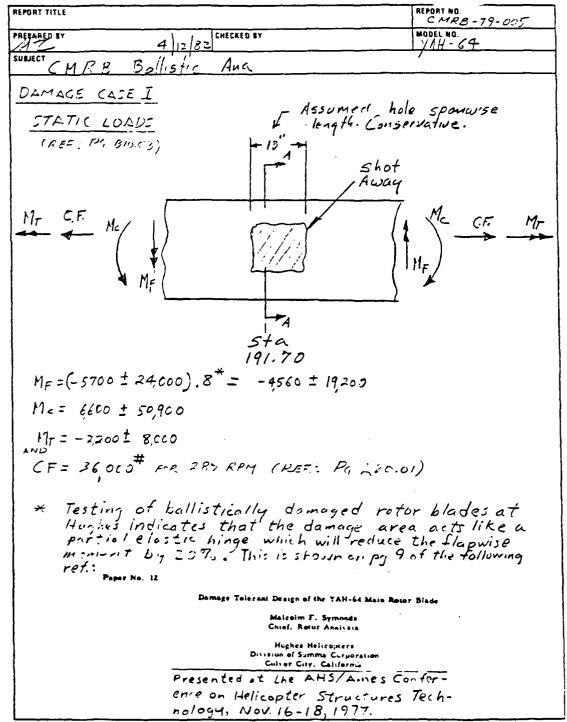


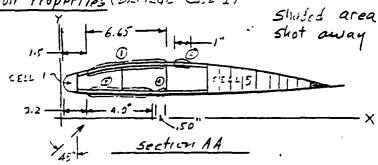
Table C-2. Main Rotor Blade Preliminary Vulnerability Fatigue Spectrum


r	Number of	M _F (in-l		Mc (in-1)	b)) In-	
(in.)	Cycles	Mean	Cyclic	Mean	Cyclic	Mean	Cyclic
25	20	3500	13700	-	_	-8200	10800
	29	3500	13700	(- I	_	-6800	8500
	96	3500	8200	! -	_	-4800	5400
	983	negl.	2800	1 - 1	_	-2900	2500
	7542	negl.	1900	-	-	-1900	1850
34.5	20	5600	18700	32000	31800	-8200	8400
	29	5600	18700	32000	29600	-6800	6600
	96	5600	11200	30000	22700	4800	4200
	983	negl.	3700	-4000	14500	-2900	2000
	7542	negl.	2500	-4000	11600	-1900	1450
44.5	20	3900	20800	29800	41500	-7500	8600
	29	3900	20800	29800	38600	-6200	5900
	96	3900	12400	27700	29600	-4400	3700
	983	negl.	5000	-3700	14900	-2700	1000
	7542	negl.	3400	-3700	11900	-1700	700
226.55*	20	-3200	16600	3500	31400	-2100	6800
	29	-3200	16600	3500	29200	-1700	5400
	96	-3200	9900	3500	22400	-1200	3400
	983	negl.	3400	negl.	4100	- 700	1600
	7542 ヹ=ゟゔ70~	negl.	2300	negl	3300	- 500	1200

REE Toble a-10, Hugi: Helicopters Report No. 77-5-8000-2, April 1981

NUMBER OF LOAD CYCLES FOR 30 MINUTES FOR ONCE/REVOLUTION OCCURRENCE:

 $N = 30 \times 289 = 8670$ CYCLES


* CRITICAL STATION FOR MAYIMUM LOLDING OF CONSTANT SECTION OUTS: OF STA. 81.0.

PAGE C10.06 - 0F-

REPORT NO. REPORT TITLE CMRB-79-005 MODEL NO. PREPARED BY CHECKED BY

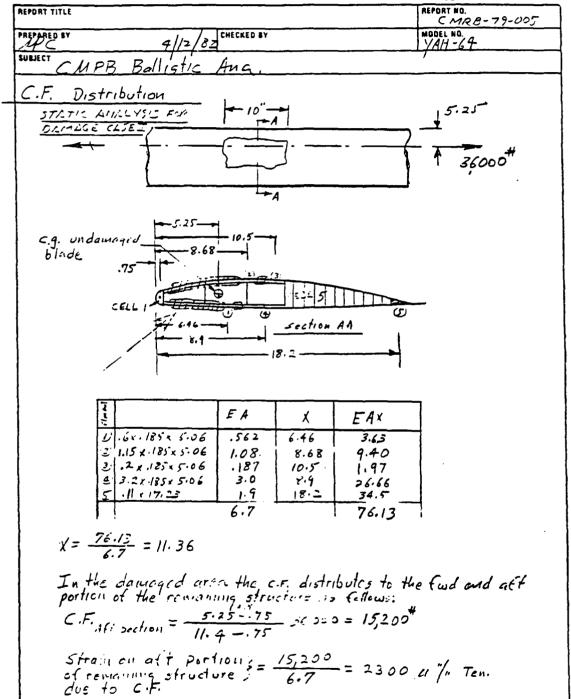
Section Properties (DAMILLE CASE I)

* Ref AFPA CMRB-79-805 P. A30.02

		E A	X	γ	EAX	EAX.	EIco	EAY	EAY2	EIF.
	ين ۽ ڏو Section*	34.39	5.04	1.491	173.32	₹75.56	983.5	51.27	76.45	12.7
	.0	-6.17	4.32	2.43	-30.5+	-145.1	-23.17	-14.49	-36.43	202
>	@	9361	9.8	2.553	- 9.17	-90.0	08	-2.39	-6.10	0
	0	-3.85	4.232	.772	-16,2	- 68.6	- 5.2	-2.96	- 2.28	014
								35:		
		22.99			114.6	546.7	945.3	30.58	31.38	12.48

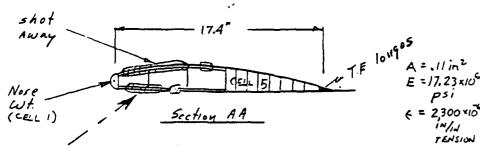
$$\overline{\chi} = \frac{114.6}{22.74} = 5.0^{\circ}$$

$$\overline{\gamma} = \frac{30.58}{42.99} = 1.33^{\circ}$$


FIF= 12.48+ 31.38 - 1.33x 50.58 3.2 LB-IN-

EI, = 5457 + 9453 - 50+1146 = 919 LB-INZ

FORM \$704 (REV 4/77)



Hughes Helicopters

REPORT TITLE		REPORT NO. CMR B-79-005
PREPARED BY	4/12/82 CHECKED BY	MODEL NO. YAH-64
SUBJECT CUPE	PULL	7

Resistance of Me (DAMAGE CASE I)

Mc = 6,600 ± 50,900 = 57,500" # Com. in T. F. longosjTen Nose wt.

Assuming Mc is resisted as a couple load at the Nose wt and T.E. longs:

C.F. load resisted 3= .11x2300x17.23 = 4359 # Ton load.

by the T.E. longos 3= .11x2300x17.23 = 4359 # Ton load.

F. Ref CMRB 77-005 App. A , P. As1.05

Column load that the 3= 16,900 x.11 = 1859 # Allowable compression
T.E. longos can resist 3 = 16,900 x.11 = 1859 # Allowable compression
1040.

$$MS = \frac{4359 + 1859}{3304} - 1 = \frac{.88}{.000}$$

Above M.S. shows that the damaged blade will resist chordwise bending.

REPORT TITLE PREPARED BY SUBJECT CMRB

by cell 5 (DAMAGE CASE I) Torque resisted

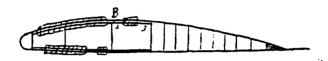
t=.030" Section AA Kevlar 49/Epaxy

g resisted = 15,600 x.030 = 468 #/4
by 5km } = 15,600 x.030 = 468 #/4 [Appendix A P. A30.05 CMRB-75-005

T=468 X2x 7.02 = 6,570" #

torque is resisted as a couple as shown Remailing where:

$$V = \frac{8000 + 2200 - 6570}{11} = 330^{\#}$$


Remaining torque is resisted as differential bending. See analysis for point " shown above.

CELL ! CONSERVATIVELY NEGLECTED (CONTRIBUTION SMALL).

REPORT TITLE		REPORT NO. C MRB- 79-005
PREPARED BY	4/12/82 CHECKED BY	MODEL NO. YAH-64
SUBJECT CM PR	Rollistic Ana	

Resistance of MF, Mr and C.F. (DAMAGE CASE I)

Point B' critical

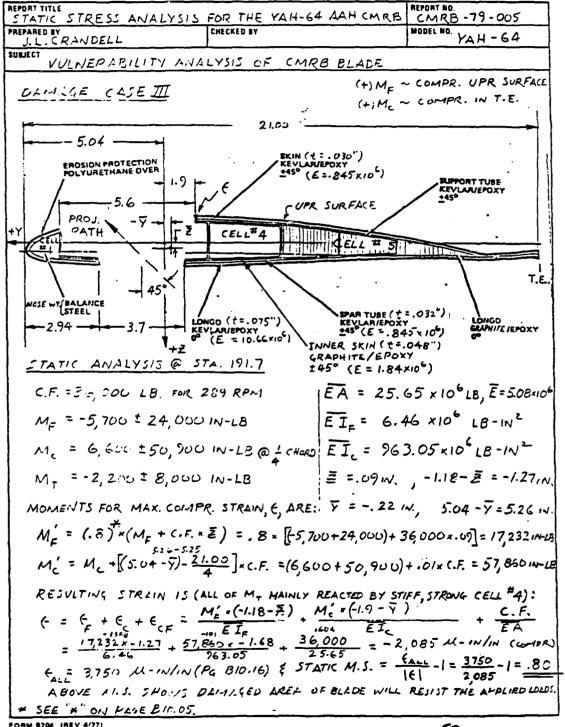
 $M_F = -4,560 \pm 19,200 = 19,640$ Com. upper surface.

France of demograph $f = \frac{10}{2} \times 330 = 1,650$ area due to differential binding $f = \frac{10}{2} \times 330 = 1,650$

stam curve f (Pg B10.15) = 3,700 μ "/.. com. $MS = \frac{3,750}{3,700} - 1 = \frac{.01}{.01}$

Above M.S. shows damaged area of blade will resist Mr.

FORM 9704 (REV 4/77)



Ref stress

Hughes Helicopters

REPORT TITLE		REPORT NO.
PREPARED BY	GHECKED BY	CMRB-79-005 MODEL NO. YAH-64
J C SUBJECT	4/15/82 CHECKED BY	YAH-64
CMIS	PLILISTIC AND	
BIN 1. CE		
FATISHE	AWALYSIS AT STA. 226.	ST COME X-JECT AS AT STAIGHT
1	76, 500 LB. @ 284 KP11	
N/E = (-	3, 200 ± 16,600)x.8 = -2.	560 ± 13, 280 W-LB
ſ	-	FRITIQUE LOLD REF.: P4 810.04)
M_ =	2,100 ± 6,800 1N-10 =>	0± 2330 /N-68
3		,
£ = <u>`</u>	-2.560 ± 13, 280)-1.17 = (±2330)	2)/1.8×1.27 + 2,300 @ PJ. B
= 9	36 ± 4,876 ± 463 +2,30	N
= 3,	236 ±5,319 11-10/10	
E = 10	the 10h psi for texaR	LEPRY LUNGUS
F = 6	E = 34,500 ± 55,700	psi -
=	91, 200 psi (TENS.)/-22,	20 v psi (compr.)
F' =	161,000 pm (Py BIO.	13 of B10.17)
E. =	31,900 pm (Pg 810.	
	TENS. 11.5. = 91,	200 -1 = · <u>75</u>
	Centhr. 1-15. = 319	$\frac{8c}{2cq} - 1 = .44$
THE	CEFORE, BY INSPECTION,	LIFE AFTER IMPLIT IS
*	L' GREATEP TULIN 30 AIN	
TAIL	, FUR THE STATIC COLD.	P4 310-10).
1	51575 6,510 W-LE (Pa B 10-09)).
* SEE PG L	210.25.	

REPORT NO. STRESS ANLLY JIS FOR THE YAH-64 ACH CMAB CNIRB-79-005 PREPARED BY J. L. CAARIDELL MODEL NO. VAH-64 CHECKED BY YULNERLBILITI ANALYSIS OF CMRB BLADE FATIGUE ANALYSIS @ STA 226.55 (SANE X-SECT. AS @ STA 191-7) (DEP-1AGE CLIETE) C.F. = 36,000 LB. @ 28, RPM (FLTINE LOAD L.F. : P6 B10.04) ME = -3,200 = 16,600 IN-LE CONSERVATIVELY LET Me = 3,500 ± 31,400 IN-LB. N = 8670 CYCLES FOR 30 MINUTES M7 = -2,100 = 6,800 W-LB, M/ =.8. [(-3,200 + 36,000.09) ±14,600] =40 ± 13,280 IN-LE. M/ = (3, 500 = 31,400) + .01= C.F. = 3,860 = 31,400 N-LB $f = \frac{(20 \pm 17, 280)(-1.27)}{6.46} + \frac{(3.86 \pm 31,400)(-1.68)}{963.05} + \frac{36,000}{25.65}$ = (0 ± 2,611) + 67 ± 55) + (=04 = 1405 = 2,664 U-101/14 # E = 10.66 ×10 ps, FOR KEVLAR 49/EPOYY LONGES f = E = 14,977 = 28,420 peri = 43,397 pai(tens)/-13463 jose (compr.) GRAPHICKLLY & IS COMPARED WITE ALLOWABLES FOR N=8670 A: FOLLOWS: - - F FOR N = 8670 CYCLES =160,000+ TENS. ALS = 2.42.

(COMPR. ALS = 1.38 ALIN. FOR FATIGUE) 14.977 J N = 8670 cyc155 > STATIC M.S. = .80 $- F_{u} = E \epsilon_{All} \times \frac{F_{t.}}{F_{t.}} = 10.66 \times -3,750 \times \frac{160,000}{200,000}$ -13,443 -31,9807 THERERIZE, BY INSPECTION, LIFE AFTER INTPICT IS MICH GRELTER THEN 30 MIN TEST LESS CRITICAL THAN FOR THE STATIC COIDS (PG BIG. 12). × 10-6 11/14. HY SEE DISIT DATA CONVE ON POBIC.17

REPORT TITLE			REPORT NO. CMRB-77-005
PREPARED BY	4/15/52 CHECKED BY		MODEL NO. YAH-G4
SUBJECT CMPE BA	LLISTIC ANA.		
DAMAGE CASE	$I\!\!\!Z$		
STATIC LO	LD:		
M _E = .	8. (-5,700 ± 24,000) = -4560	±19,200
			76,000 # Fun ZE9 RPM
M = -	2,200 ± 8,000		
SECT. PROP.			
~	,		2 <i>5 ह =4.4</i> 9 ?
1	-5.25	EI = 927.5	
-2	85		
	C KELL	Ti-Ti-Ti-Ti-Ti-Ti-Ti-Ti-Ti-Ti-Ti-Ti-Ti-T	
CELLIS		<u> </u>	3
-	445 - 3.6 -		x
CF DISTRIBU	18.2-		
<u> ElEi'</u> 7	E #	(*-43)	E A(x-1.3)
() 3.	25x.18Jx5.06 = 3.05	8.58	26.17
② /.	65x.185x5.06 = 1.55	9.38	14.54
② .	11 > 17.23 = 1.90	16.9	32./1
٤	6.50	~	72.82
×	= 72.92 = 11.20	,	
	75CT = 5.25-1.3 2 ;		,364 [#]
+ x+7 5 9	$=\frac{14.364}{6.50}=z_{0}$	210 /1-11	/10. TE115.
+ SEE "+" ON F			

REPORT TITLE		REPORT NO.
PREPARED BY	4 /15/8- CHECKED BY	CI-IRB - 79-005
SUBJECT	17 3725-	YAH-64

STATIC MILLYSIE (DLIMBIE CASE IV)

RESISTANCE OF ME

1/2 = 57,500"- CONIR IN T.E. LONGOS; TENS. NOSE WT.

DISCHING ME REFIETED IS A COUPLE LOAD BY THE NOSE WT. & T.E. LONGO:

CF LOST RETISTED } = .11 x 2,210 x 17.23 = 4,189 #

T.E. LUMG CON REGIST ; = 16,900x.11= 1,859 # ALLOW. GAPR.

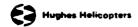
RESISTIMICE OF M. , MY & C.F.

A/E = 14,640=

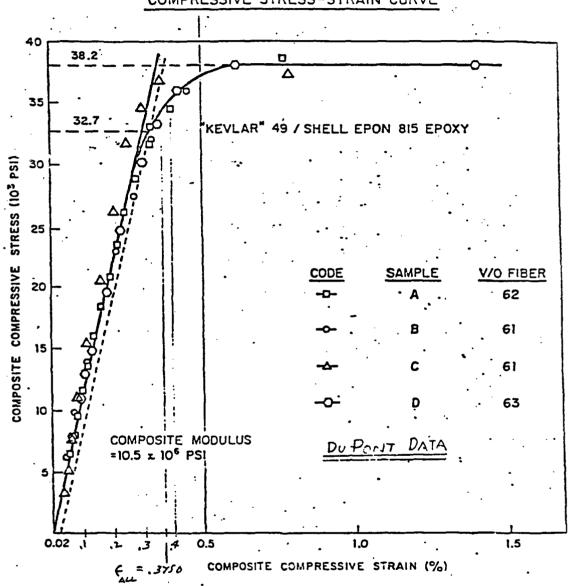
MCM. @ EUGE OF DEVISITE } = 10 x320 = 1,650 "-#

CREA DUE TO DIFF. BEND. } = 10 x320 = 1,650 "-#

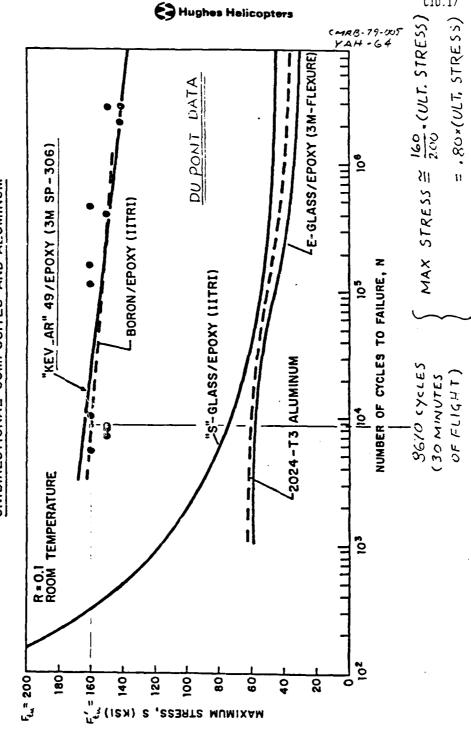
(PG B10.10)


STRLIN ... "D"(PG B10.14) = | 2,210 - 1650 - 14640×1.17 | 3.36 | = 3,685 M-10/10 compr.

$$\epsilon_{n,2} = 3,750 \, \mu - 11/10 \qquad \text{a.s.} = \frac{3.750}{3685} - 1 = \frac{.01}{.01}$$

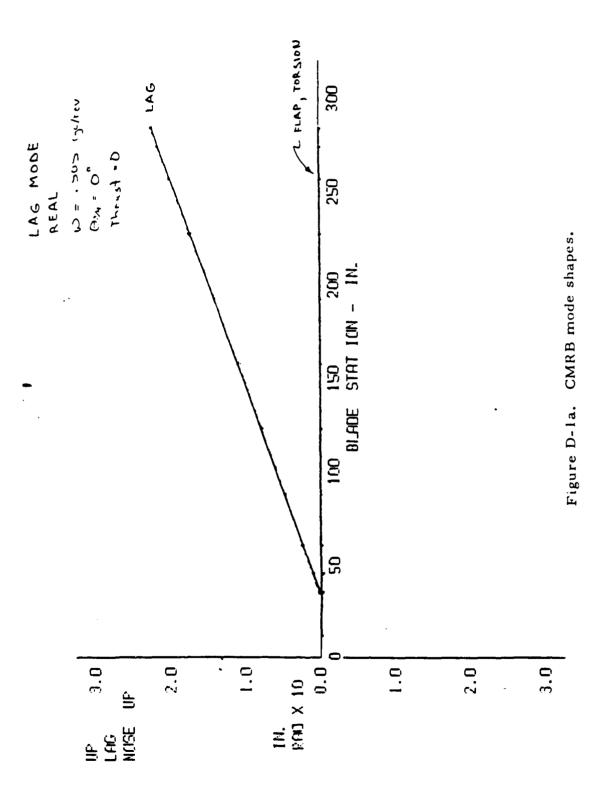

FATIGUE ANALYSIS (DAMAGE CASE IV)

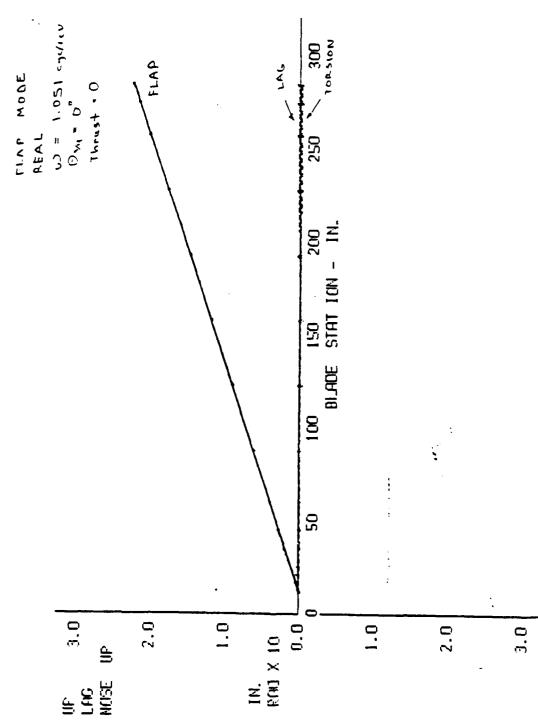
THIS CLIE HAS THE SALIE STATIC MARGIN-OF - SAFETY AS


- · FUTICUE LIFE > 30 MINISTES
- FLTIGUE NIS = .44 (P. E10.11)

UNIDIRECTIONAL COMPOSITE COMPRESSIVE STRESS-STRAIN CURVE

UNIDIRECTIONAL COMPOSITES AND ALUMINUM TENSION-TENSION FATIGUE BEHAVIOR OF


C10.17


APPENDIX D

DYNAMIC ANALYSIS OF THE COMPOSITE
MAIN ROTOR BLADE FOR THE
AH-64A HELICOPTER

This appendix supplements the dynamics section of the CMRB final report. It summarizes mode shapes in Figures D-la through D-ln that show mode shape plots for the CMRB with cyclic boundary conditions.

At frequencies where there are significant real and imaginary deflections, both components are plotted.

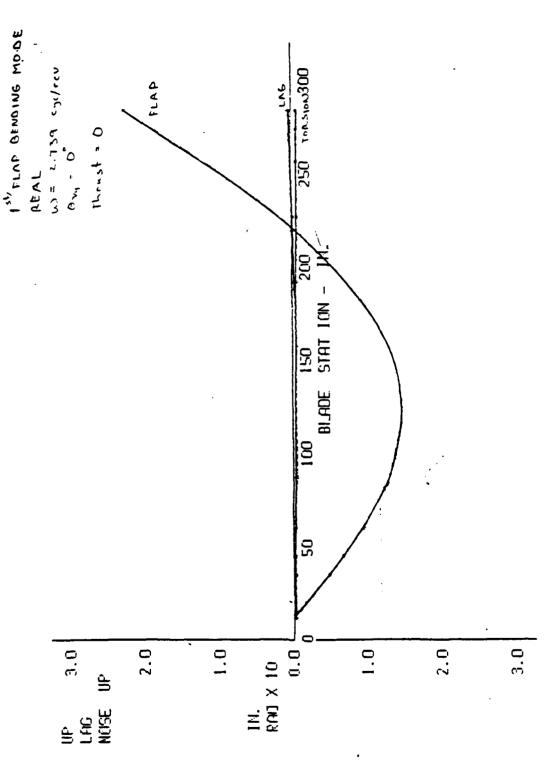


Figure D-1c. CMRB mode shapes.

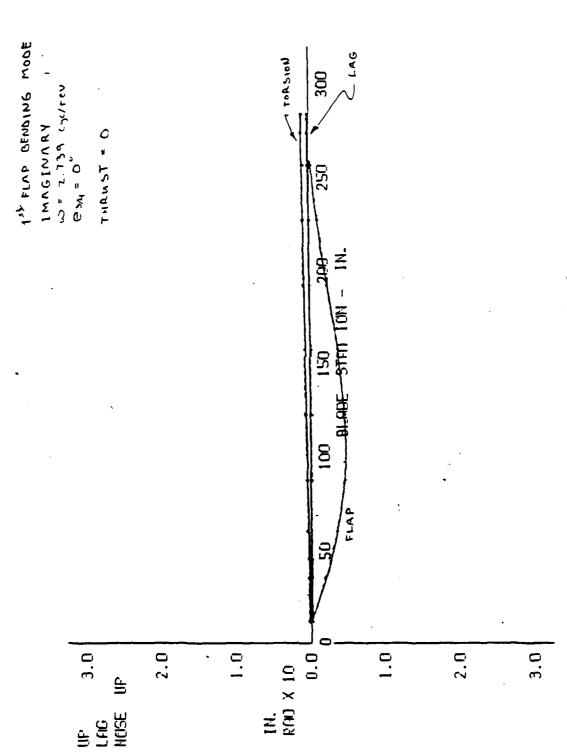


Figure D-1d, CMRB mode shapes.

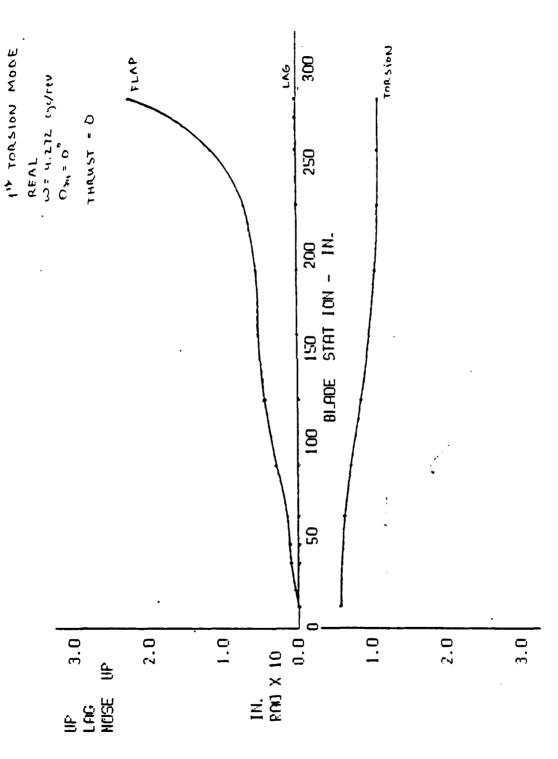


Figure D-1e. CMRB mode shapes.

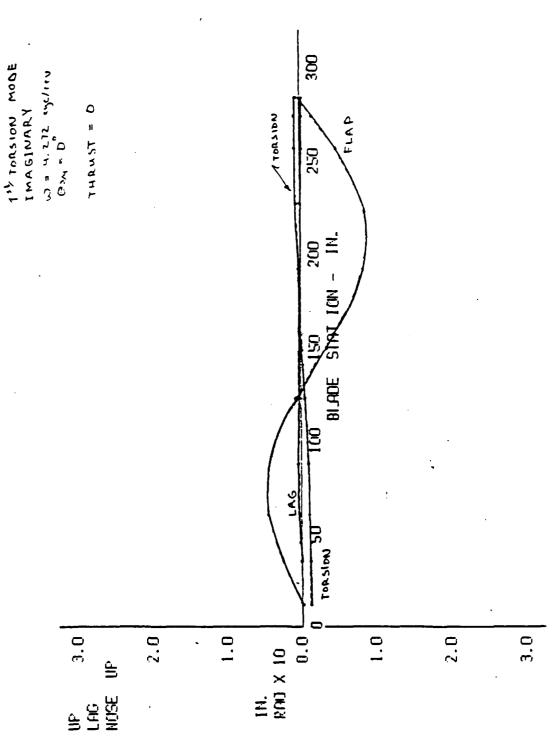


Figure D-1f. CMRB mode shapes.

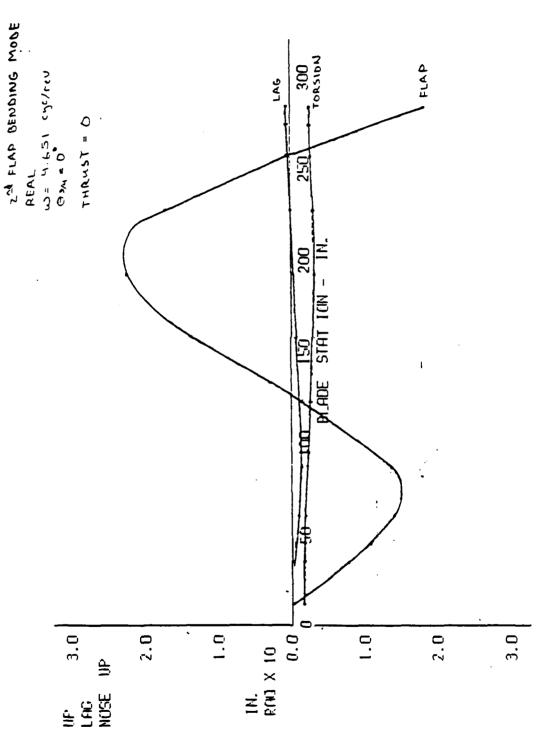


Figure D-1g. CMRB mode shapes.

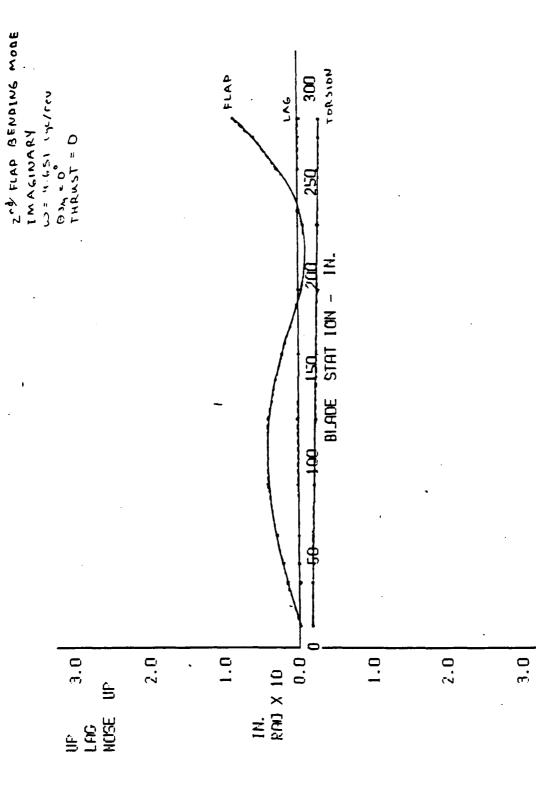
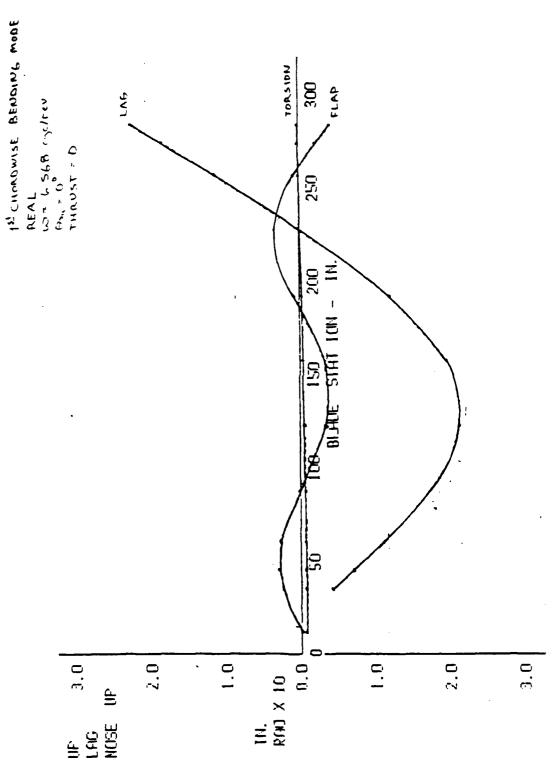
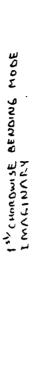




Figure D-1h. CMRB mode shapes.

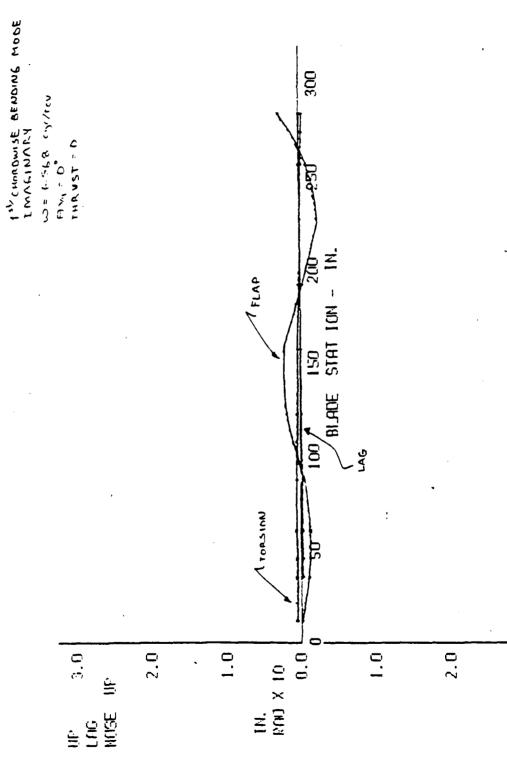


Figure D-1j. CMRB mode shapes.

3.0

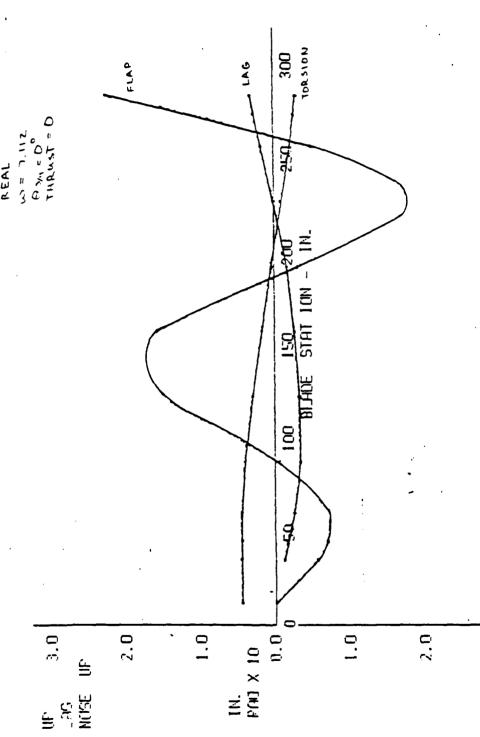
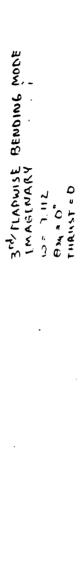
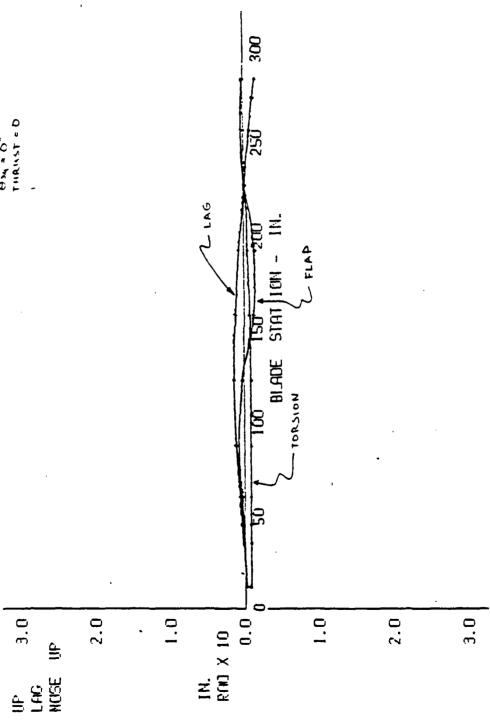




Figure D-1k. CMRB mode shapes.

3.0

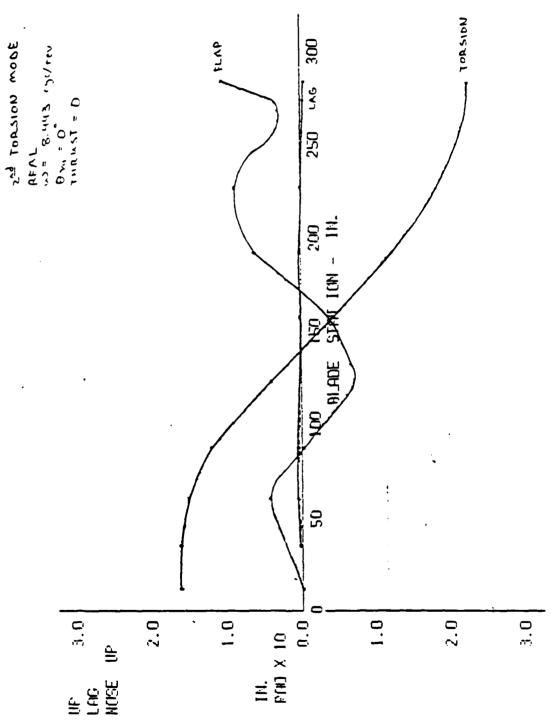
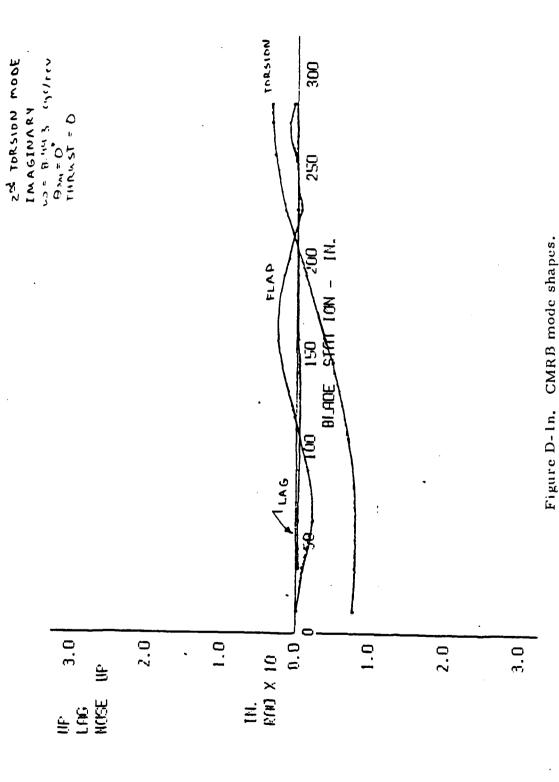



Figure D.1m. CMRB mode shapes.

D-17

APPENDIX E

ENGINEERING PROCESS MANUAL FOR FABRICATING THE COMPOSITE MAIN ROTOR BLADE FOR THE AH-64A HELICOPTER

Cill even pages are missing and are not available

30 aug 89

BULLETIN	EPB 15-142	REV.	PAGE 3	OF 17

1. SCOPE

1.1 This process bulletin establishes the materials and processes required to fabricate the Model 77 composite main rotor blade (CMRB) PN 7-311412500. It is currently in preliminary form and will be finalized before production begins.

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents, of the issue in effect on date of the initiation for bids or request for proposal, form a part of this specification to the extent specified herein. In case of conflict between these documents and this specification, the requirements of this specification shall prevail.

SPECIFICATIONS

F	e	d	e	r	1	ı

QQ-W-423	Wire, Steel, Corrosion Resisting
RR-W-360	Wire Fabric, Industrial
TT-I-735	isopropyl Alcohol
TT-M-261	Methyl Ethyl Ketone, Technical
MMM-A-132	Adhesive, Heat Resistant, Airframe Structural, Metal to Metal
Military	
MIL-C-9084	Cloth, Glass, Finished, for Resin Laminates
MIL-T-21014	Tungsten Base, High Density Metal (Sintered or Hot Pressed)
MIL-A-21180	Aluminum Alloy Casting, High Strength
MIL-S-22473	Sealing, Locking and Retaining Compounds, Single-Component
MIL-R-60346	Roving, Glass, Fibrous (for Filament Winding Applications)

FORM 1843A

E-2 not avoid.

BULLETIN	EPB 15-142	Rev.	PAGE	5	OF	17
НМ	15 16-1164		ngth Organ			
нм	15 16-1171	Adhesive	for Polyur	ethan	e Bond	ing
нм	1S 17-1172	Polyureth Elastome	nane, Rain er	Eros	ion Re	sistant
нм	4S 17-1175		nane Foam nguishing,			
нг	2 1-17		atment of lation Harde			
нг	P 4-35		reatment ol- l-to-Metal			Alloys
нг	P 5-10	Environn	nental Seal	ing		
н	P 6-3	Torquing and Nuts	of Aircra	ft Bol	ts, Scr	ews,
н	9 6-5	Magnetic	Particle I	nspec	tion	
н	≥ 8-5	Identifica Assembl	tion of De	tail P	arts an	d
н	9-20		and Primin sive Bondi		lungste	n Alloys
н	₽ 9-26		Prime of . t Steel for	-		
н	₽ 10-7	Shelf Lif	e			
н	P 15-42	Fabricat	ion of Rein	force	d Plasi	ics
н	P 15-45	pound for	ion of Liqu r Sealing a rs, Bearing	nd Re	taining	Metal
HI	P 15-67		ion of Com	•		by
н	P 16-21	Structura	al Metal-to	-Met	al Bone	ling
ORM 1643A			•	3 Hu	ahes Hel	icopters, Inc.

FORM 1643A

Hughes Helicopters, Inc

BULLETIN	EPB 15-142	REV.	PAGE	7	OF	17
7-31	1412615	Forward	channel mo	ıd		
7-31	1412616	Aft channe				
	1412617		edge longo r	nald		
		_	_			
7-31	1412618	Root end	wedge mold			
7-31	1412619	Form blo	ck			
7-31	1412620	Root end	dam mold			
7-31	1412625	Template	(erosion st	rip bu	ildup)	
7-31	1412629	Index plat	te, end plat	e		
7- 31	11412630	Tool asse	mbly layou	t		
7-31	1412632	Template	guide setu	P		
7-31	.1412633	End dome	detail win	ding m	andrel	
7 - 31	1412636	Spar broo	om winding	fixtur	e	
7 - 31	11412638	Spacer -	tip core an	d mold	ì	
7-31	11412639	Skin layu	p layout			
7-31	11412640	Bushing 1	location fixt	ure		
7-31	11412641	Blade cod	oling fixture	;		
7-31	11412642	Root end	dam locato	T		
7-31	11412643	Filler - d	dummy tube	and t	railing	edge
7-3	11412644	Tip weig	ht locator			
7-3	11412645	Spar wed	ige template	•		
7-3	11412646	Template	spar cap t	ip		
7-3	11412647	Staging t	able			

FORM 1643A

E-7

Microballoons

Polyurethane erosion strip bonding adhesive and primer (HMS 16-1171)

Polyurethane erosion strip banding adhesive and primer (HMS 17-1172)

Resin and hardeners (HMS 16-1115)

S-glass roving (MIL-R-60346, Type IV, Class 1)

Tungsten (MIL-T-21014)

Urethane foam (HMS 17-1175)

Wire rods, 316 CRES (QQ-W-423)

3.2.2 Shop aids.

Double-back tape

Isopropyl alcohol (TT-I-735)

Metal spacer

Methyl ethyl ketone (MEK) (TT-M-261)

Mold release (Ram 225, or equivalent)

Peel ply (Air Tech, Tool Tech, or equivalent)

Polyethylene, film, 2-mil, embossed

Polyvinyl alcohol

Scrim cloth

Sealant tape

Styrofoam, sheet, 1/2-inch (12.7 mm)

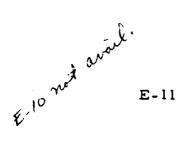
Tedlar film, 1-mil

Teflon plugs

Wax (Trewax, or equivalent)

Wrightlon tube (Vac Pac, 3-mil) (7400 LF, 0.003)

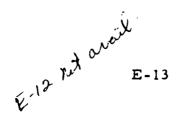
FORM 1843A


Hughes Helicopters, Inc.

E-8 mod avoil.

- 3.3.2 <u>Fabrication of reinforced plastic subassemblies</u>. Reinforced plastic subassemblies shall be fabricated in accordance with HP 15-42 and HP 15-67. Colored cotton thread may be used within the fiberglass laminates to indicate the fiber orientation.
- 3.3.2.1 Fiberglass subassemblies shall be fabricated with a nylon peel ply which shall be removed just prior to the bonding operation. All peel plies shall be marked "Remove Peel Ply" with letters no smaller than 1/4 inch (6.35 mm) in accordance with HP 8-5.
- 3.3.2.2 Fiberglass may be spliced in the filler area and 60-degree wraps of spar tubes only. Splices shall be overlapped at least 1 inch (25.4 mm).
- 3.3.2.3 Fiber volume requirements and dry:wet fiber weight ratios are specified below.
- 3. 3. 2. 3. 1 A 50-percent fiber volume and a 0. 56 \pm 0. 03 dry:wet fiber weight ratio are required for Kevlar 49 fabric and rovings.
- 3.3.2.3.2 A 55-percent fiber volume and a 0.60 ± 0.03 dry:wet fiber weight ratio are required for graphite fabric and rovings.
- 3.3.2.3.3 Fiber volume and dry:wet fiber weight ratios shall be performed as required by this EPB in accordance with the techniques specified in HP 15-67.
- 3.3.2.4 Storage of any filament wound or other uncured component awaiting incorporation into a blade shall be done at low temperatures, in accordance with the guidelines set forth in HP 15-67.
- 3.3.2.5 HMS 16-1164 (Kevlar) yarns and fabrics shall be dried out prior to impregnation in accordance with HP 15-67.
- 3.3.3 <u>Fabrication records</u>. The following information is required to be recorded in the individual planning for each blade fabricated (including individual components).
 - 3.3.3.1 Fabrication, start and completion time.
- 3.3.3.2 Lot, batch, or any other applicable identification numbers for all materials used.
 - 3.3.3.3 Resin mixing, dates and times.

E2 Hughes Helicopters, Inc.

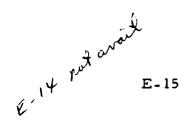

FORM 1843A

- 3.3.4.4 <u>Leading edge balance weight rods</u>. The 316 CRES stainless steel balance rods shall be processed as follows.
 - 3.3.4.4.1 The required number and lengths are as specified in 3.3.6.1.1.
 - 3. 3. 4. 4. 2 Etch and prime the cut rods in accordance with HP 9-26.
- 3.3.4.4.3 Identify in accordance with HP 8-5 and seal in a polyethylene bag until ready for use.
- 3.3.4.5 <u>Tungsten leading edge balance weight</u>. The tungsten balance weight shall be prepared as follows.
 - 3. 3. 4. 5. 1 Etch and prime in accordance with HP 9-20.
- 3.3.4.5.2 Identify in accordance with HP 8-5 and seal in a polyethylene bag until ready for use.
- 3.3.4.6 Backing strips. The 301 CRES stainless steel backing strips shall be processed as follows.
 - 3. 3. 4. 6. 1 Etch and prime in accordance with HP 9-26.
- 3.3.4.6.2 Identify in accordance with HP 8-5 and seal in a polyethylene bag until ready for further use.
- 3.3.4.7 Aluminum wire mesh (7-311412547). The 5056 aluminum lightning screen (RR-W-360, Type I, Class 2) shall be processed as follows.
- 3.3.4.7.1 Clean using MEK (TT-M-261) spray, repeated as required to remove any visible contamination.
- 3.3.4.7.2 Identify in accordance with HP 8-5 and seal in a polyethylene bag until ready for further use.
- 3.3.5 Curing. The minimal acceptable cure cycle is dependent on the adhesive and resin system used. The most frequently used acceptable cure cycles are as follows. When any deviation from these is used it must be with the consent of the HHI Materials Processes and Standards Department, as indicated by the signature of the cognizant MP&S engineer on the applicable shop planning.

FORM 1643A

Hughes Helicopters, Inc.

3.3.6.2 Voids greater than 0.125 inch (3.175 mm) in depth shall be repaired as follows:


WARNING

Fire hazard; solvent is dangerous when exposed to heat or flame; use only with plenty of ventilation away from smoke and flames. Flashpoint 22°F (-5.5°C).

- 3.3.6.2.1 Solvent wipe area with TT-M-261 MEK.
- 3.3.6.2.2 Scuff sand the area with 180 320 grit paper to remove any gloss from the resin surface. Solvent clean as in 3.6.3.2.1.
- 3.3.6.2.3 Mix and apply HMS 16-1068. Class 3 adhesive in accordance with HP 16-25, filling voids flush with the surrounding surfaces.
 - 3.3.7 Secondary bonding operations.
- 3.3.7.1 Film adhesive bonding operations shall use HMS 16-1111, Class 3 adhesive in accordance with HP 16-30.
- 3.3.7.2 Paste adhesive bonding operation shall use HMS 16-1068. Class 3, adhesive in accordance with HP 16-25.
- 3.3.7.3 Electrical connections shall be sealed using HMS 16-1147, Class 2 adhesive in accordance with HP 5-10.
- 3.3.7.4 The 7-3114152516-11 erosion strip shall be bonded in accordance with EPB 16-139.
 - 3.3.8 Finish (paint). Finish in accordance with EPB 4-230.
- 3.3.9 Weight and balance. Weight and balance procedures shall be in accordance with EPB 30-164. Install weight retention fitting doors and secure fasteners using MIL-S-22473, Grade C in accordance with HP 15-45. Torque fasteners to 25-35 inch-pounds (2.8-4.0 N·m) in accordance with HP 6-3.
 - 4. QUALITY ASSURANCE
 - 4.1 Provisions of the NDE plan apply.

FORM 1643A

Hughes Helicopters, Inc.

BULLETIN EPB 15-142 REV. PAGE 17 OF 17	
--	--

- 6. NOTES
- 6.1 Intended use. This process is intended for use in the fabrication of the composite main rotor blades for the Model 77 helicopter.
 - 7. APPROVED VENDORS

Not applicable

FORM 1643A

APPENDIX F

NONDESTRUCTIVE EVALUATION PLAN
OF THE
COMPOSITE MAIN ROTOR BLADE
FOR THE AH-64A HELICOPTER

F-2

NONDESTRUCTIVE EVALUATION PLAN

This nondestructive evaluation (NDE) and nondamaging testing (NDT) plan is proposed for the production CMRB to assure structural quality by:

- Detecting critical flaws
- Measuring structural integrity
- Evaluating consistency of fabrication

It will be reevaluated after the first block of production blades is completed, and modified if necessary. This proposed plan anticipates the potential for the occasional occurrence of flaws, defects, and fabrication errors that can degrade the structural quality, it establishes the optimal NDT equipment and procedures for evaluating these possible defects, and it quantifies the tolerance limits that are acceptable for defects and manufacturing inaccuracies.

Table F-1 lists defects, flaws, and fabrication errors that were experienced in the CMRB MM and T prototypes manufactured to date. The list is an anticipatory forecast for the production blade, and will be updated upon completion of the blade preproduction program. At that time, a better categorization can be made with respect to defect types, likelihood of occurrence, size, location, probability of growth rates, and better analysis of the structural criticality of the various defects. The tentative consequences of the flaws described in the rightmost column of Table F-1 will be upgraded after a more substantive data base is accumulated. A part of the work yet to be done will be the establishment of a set of structural criteria that provide "test/don't test" guidelines; i.e.,

 "Search, inspect, test, and NDE flaws, defects and error that each individually degrade the strength, modulus, fatigue resistance of the MRB by more than 5 percent of its initial or unflawed value."

Table F-2 lists potential techniques and associated instrumentation for evaluating the CMRB. Table F-3 indicates the present evaluation of the success of these techniques.

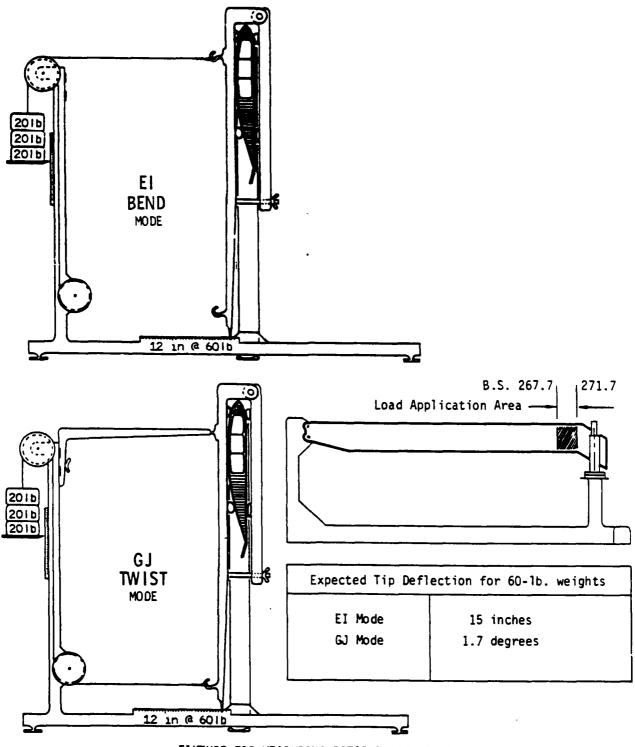
TABLE F-1. POTENTIAL PRODUCTION FLAWS THAT MAY OCCUR IN THE CMRB

Type of Defect	Consequences When Defect Exceeds Tolerance Levels
Interlaminar delamination	Delamination grows with cycling, causing local buckling.
Disbonded, debonded honeycomb/interface	Flutter and loss of blade stiffness and rigidity.
Porosity	Degradation of shear strength of epoxy matrix
Void	Local weakening of strength and modulus.
Resin rich, filament- poor area	Tensile strength and modulus decrease with decreasing fiber volume ratio.
Resin starved area	Compressive strength and shear strength decrease with increasing unwetted filament-to-resin ratio.
Spartube rib buckle	Loss of bending stiffness and torsional rigidity.
Thick bond lines	Shear rigidity of bondline is inversely proportional to its thickness.
Tip or leading edge mislocation	Blade won't track, or cannot be balanced easily.
Root end bushing misfit, splits, voids, cracks, separations	Potential for premature root end blade fracture in fatigue.
Foreign objects, inclusions	Some degradation of blade durability from inclusions.

TABLE F-1. POTENTIAL PRODUCTION FLAWS THAT MAY OCCUR IN THE CMRB (CONT)

Type of Defect	Consequences When Defect Exceeds Tolerance Levels
Filled honeycomb cells	Excessive material in the cells bled from surrounding skin to point of resin starvation.
Misoriented plies, waviness	Localized weakening of stiffness and strength, lowered fatigue resistance.
Reworked area	Reintroduction of stress concentrators and fatigue nucleation.
Overlap, underlap, gap	Local loss of stiffness, rigidity, and fatigue resistance.
Internal dent, damage	Local loss of strength and fatigue resistance.
Inhomogeneous cure	Degradation of strength and stiffness over wide area.
Mislocation of root-end bushing	Reduction of bushing wall and/or flange thickness during final machining, with accompanying reduction in strength.

TABLE F-2. INSPECTION NDE METHODS AH-64A CMRB


	Instrument/	Inspection/Test
Technique	Equipment	Frequency ^(a)
 Visual detection 		
- Normal illumination	Inspector	Every blade
- High intensity light	S150 Xenon Lamp	Every blade
Audible detection		
- Manual Tapping	Inspector	Every blade
- Sonic Brush	NASA Sonic Brush	Every blade
Ultrasonic scanning		
- Pulse/echo attenua-	Mark II Harmonic	Every blade in
tion	Bond Tester:	lot 1
- Pulse/echo impedance	EPB-15-138. Bondascope 2100	Every second blade
	•	in lot l
- Ultrasonic pulse,	206 AU	Every third blade
acoustic echo		in lot l
X-ray radiography		
- Microfocused, video- taped	Magnaflux NDT 9/6	Every blade in lot 1
- Conventional, negative	Cedtech	Questionable blades
film to scale		from microfocus
		X-ray.
Impulse/modal response	PCB K291 A05	Every blade
signature	tapper	
Structural quality	See Figure F-1	Every second blade
measurement, rigidity,		or TBD
frequencies and		
hysteresis		

⁽a) NDT techniques and the frequency of inspection will be recommended after the 20th blade is produced.

TABLE F-3. NDT/DEFECT MATRIX

			,	,	,	,						~ .	,	,		۰.	,	,
		,	/	/ ,	/ ,	/ ,	/ ,	/ ,	/ ;	/ ,	130/5/ 64/10 J	S/ 	رجر/	() () () () () () () () () ()		§/ /	/5/	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		O'i arinati			,/	/3		Solling 1			20/5/01/05/05/							
			2000	\z\z\	/ &/	\z\ \z\	P. 1. 1000 1.19	*\ &\	/% */		Z S	\&\ \&\	/&/ _&/	\ <u>i</u>	<u>*</u>	`&\ `&\	5/2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	/8			103/c/g		R. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			2/00/00/04				\^a		1	\$ 10 mg	/ *	
Visual																		
Normal	•	•			•	•								•	•			
High intensity	•	•	•	•			•	•			•	•		•	•	•		
Audible																		
Tapping	•	•		•					•			•						
Sonic brush	•	•		•					•			•						
Ultrasonic																		
Attenuation	•	•	•	•	•	•		•								•	•	
Impedance	•	•	•	•	•	•		•		•	•	•	•			•	•	
Acoustic echo	•	•	•	•	•	•		•				•	•		•	•	•	
X-ray	Π	Π												Г				
Microfocus	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		
Conventional	•	•		•	•	•	•	•	•	•	•	•		•	•			
		Γ																
Pulse response	•	•	•		•	•	•		•	•			•				•	
Structural quality	•	•	•		•	•		•	•	•	Π		•		•		•	

Dot size indicates likelihood of detection

FIXTURE FOR MEASURING ROTOR BLADE STIFFNESS

Figure F-1. Fixture for measuring rotor blade stiffness.

A tentative level of acceptable quality is defined by the following flaws, defects, or irregularities. Those that fall within these tolerances will be considered acceptable (minor) manufacturing errors. Figures F-2 through F-15 illustrate these flaws and their tolerances. Those that exceed these tolerances will be submitted to the Material Review Board and treated as unacceptable until disposed of by the Board.

- Skins shall be wrinkle-free over 80 percent of the surface area. No single wrinkle shall exceed 4.0 square inches in extent. Wrinkle pits perpendicular to the surface shall not exceed 0.06 inch in depth. Overridding folds in the plane of the skin shall not exceed 0.15 inch. No two wrinkles shall be closer than 10.0 inches nor shall there be more than five distinctly separate wrinkles in a blade.
- Longos shall be free of waviness over 99 percent of their volume in the lug area and 80 percent over the remainder of the blade.

 No single wave shall have an aspect ratio smaller than 20.
- Spartube sidewalls shall not deviate from vertical straightness by more than 0.05 inch, and from spanwise straightness by more than 0.50 inch.
- Interlaminar Resin overthickness shall be less than 0.010 inch in the bushing area and less than 0.030 in the longo straight sections.
- Bushings shall adhere to longos and fillers. No single disbond shall exceed 0.06 square inch in area. No more than 3 disbonds 0.06 square inch in size, shall occur per bushing.
- Filler cracks shall not extend more than 1 inch in the spanwise direction, nor more than 0.1 inch in chordwise direction.
- Outer Skins shall adhere to spar caps, and inner skins shall adhere to longos over 95 percent of their interfaces. No single delamination or disbond shall exceed 1.0 inch on an axis, nor shall disbonds be within less than 4.0 inches of each other.
- Fiber/matrix ratios shall rely on in-process control.
- Filament alignment shall be within ±3 degrees of the correct orientation for all fibers.

- Honeycomb core shall adhere to the skins over a minimum of 90 percent of cell edges. No cell edge disbond will extend beyond 10 cells, nor shall disbonded cell sets be closer than 4 inches.
- Leading edge weights shall be bonded over at least 90 percent of their surfaces, and shall be positioned within ±0.05 inch of their intended chordwise position and within ±0.2 inch of their intended spanwise position.
- <u>Tip weights</u> shall be bonded over at least 90 percent of their surfaces.
- Torsional rigidity shall be within ±6 percent of the moving cumulative average of tested blades.
- The root end bushing shall be located within drawing tolerance.

All production CMRB inspection and NDE Planning Packages shall be jointly reviewed and approved by Quality Engineering, Materials, Processes, and Specifications (MP&S) and cognizant Design/Technical Engineering and shall be in conformance with the instructions in Quality Assurance Production Plan for the CMRB.

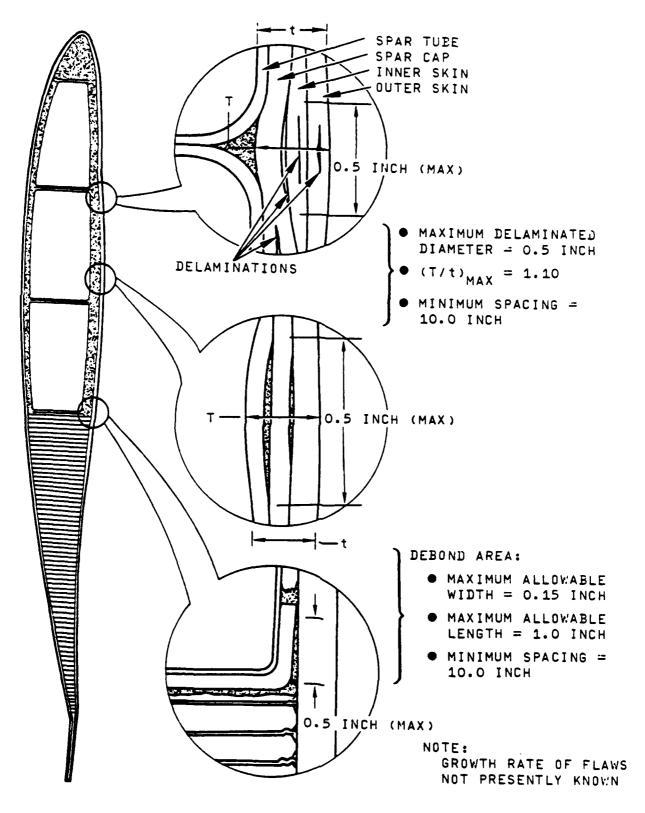


Figure F-2. Potential delamination.

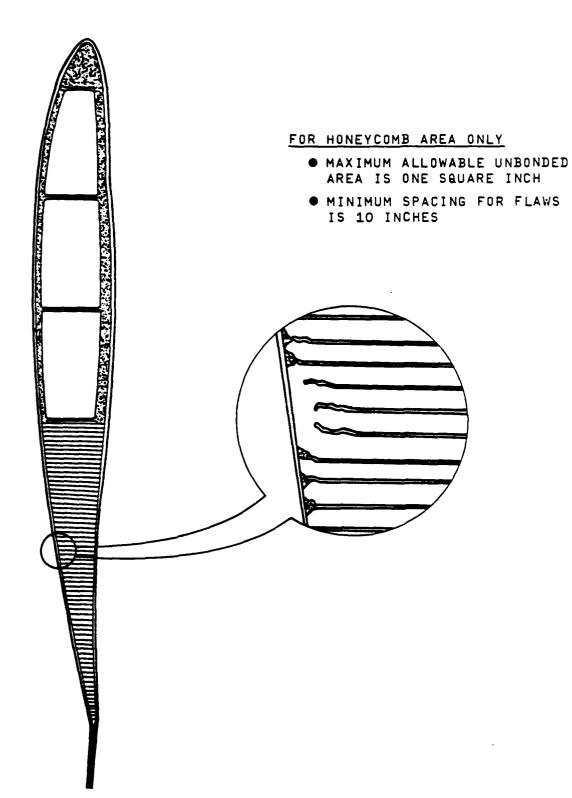
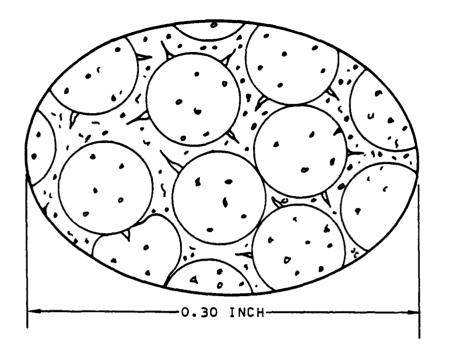



Figure F-3. Disbonded honeycomb.

- MAXIMUM ALLOW-ABLE POROSITY DIAMETER IS 0.30 INCH
- MINIMUM SPAC-ING FOR FLAWS IS 5 INCHES

Figure F-4. Porosities.

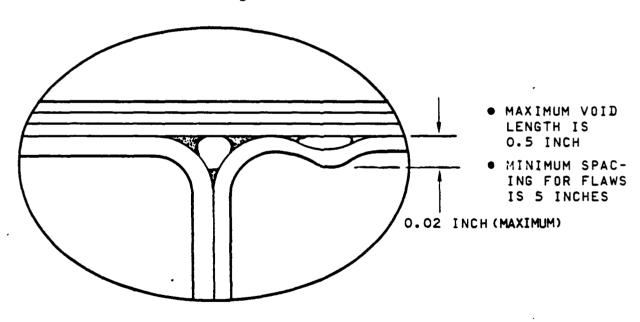


Figure F-5. Voids

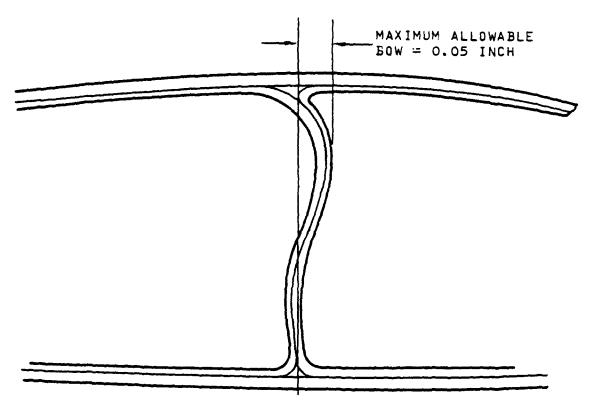


Figure F-6. Spartube rib defect.

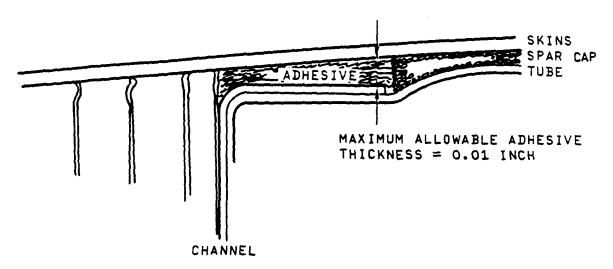


Figure F-7. Thick bondline, irregular adhesive thickness.

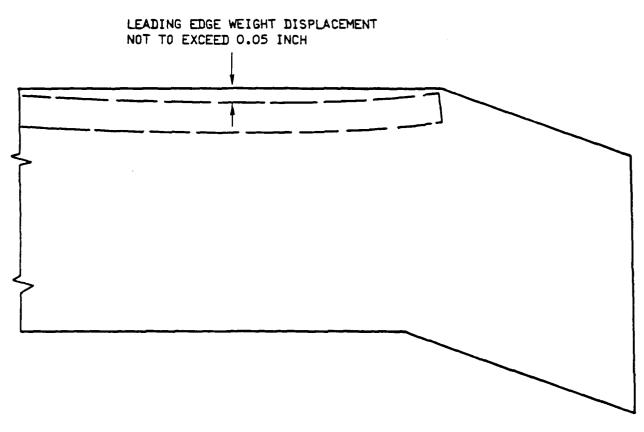


Figure F-8. Leading edge weight location tolerance.

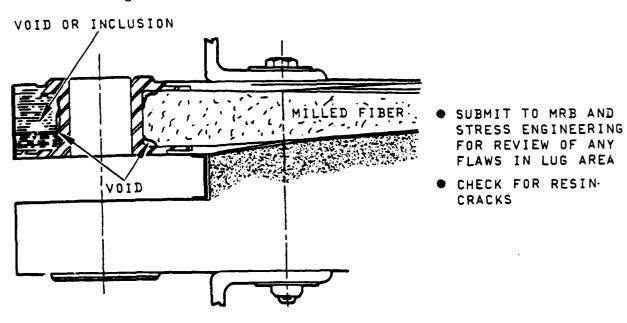


Figure F-9. Root end lug area.

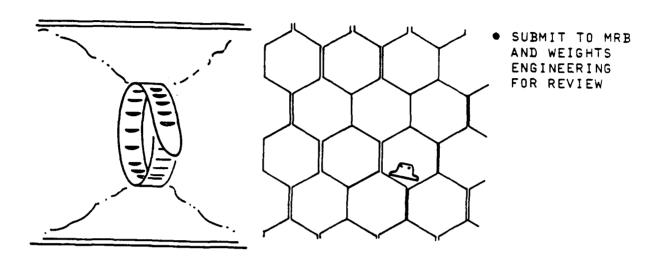


Figure F-10. Foreign objects x-rayed in blade.

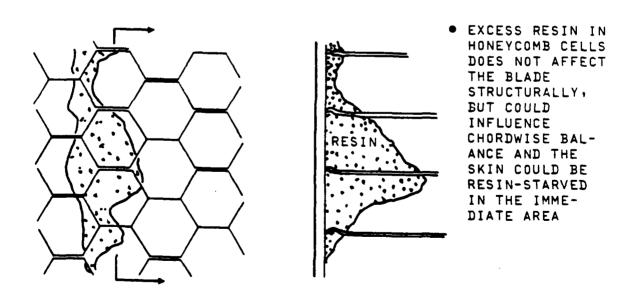
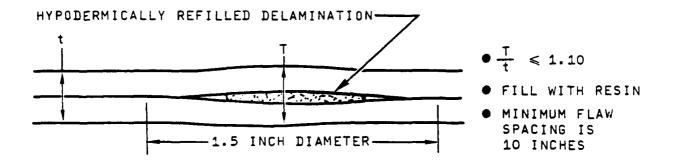



Figure F-11. Honeycomb core cells partially filled with resin.

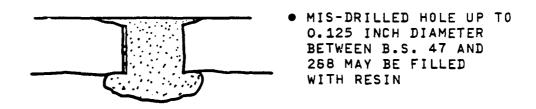


Figure 12. Reworked areas.

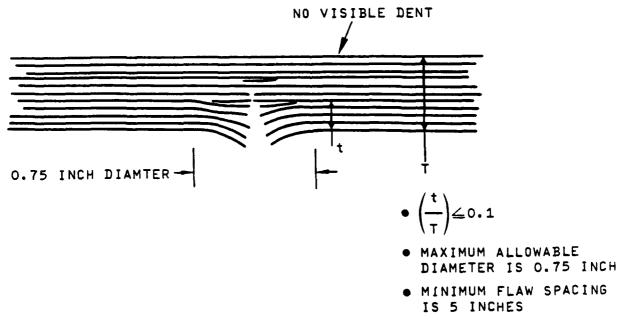


Figure F-13. Dent from tool drop or hammering.

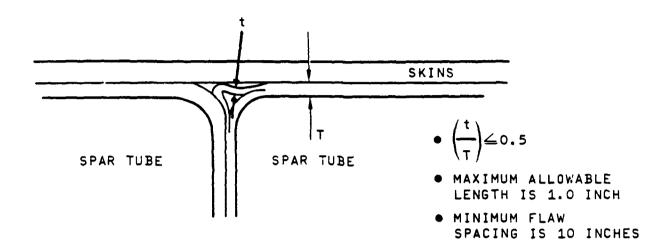


Figure F-14. Overlap, underlap, and gaps.

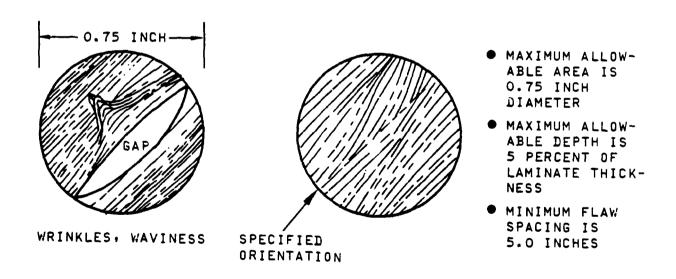


Figure F-15. Improper fly laydown.

APPENDIX G

FAILURE MODES, EFFECTS, AND CRITICALITY
ANALYSIS OF THE COMPOSITE
MAIN ROTOR BLADE FOR
THE AH-64A HELICOPTER

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

		METHOD		FANURE EFFECT	TOTAL UNSCHED MAINT ACTOS (7)	ISCHED ICTNS	O->	×0	200	COMMENTS/COMPENSATING
MOMENCI ATURE & FUNCTION	FAILURE MODE/3	06 0676CT10M (4)	SUBSYSTEM (5)	AIR VEHICLE (6)	UMA SOURCE	SOURCE	Ē			(21)
CLUSHKE ASSEMBLY - ON TROAKD					<u>\$</u>	18.2				
Provides go of high speed advancing high file tip acro-dynamic performance by curlecure of the all perform of the aurel it.	(a) Cracked or broken skla	Visual Inspection, Nul	Stight degradation of blade performance.	Foscibility of alight				4.	×	Deformation of the out- beard aft closure may stages a change in blade tip path resulting to an out-of-track condition.
	(b) Debunding of the skin from the Manea Haveycomb core.	Vinual Inspection, NDI	Same as above.	Same as above.				\$	v.	Same as above.
	(c) Structural Callure (complete).	Visual Inspect- ion, system response.	Blade becomes unstable, fossibility of abort due to vibration.	Fossibility of aburt due to vibration.				70. 90.	κI	Partial loss of the closure would result for retor librals are small full out-of-track small fully. Wheation would wary, depending on the filkhi envelope.
Source 1 - CHAJA, B and L scripe Helltopter and scrip rate data analysis DisAMBBL tech Source 2 - Retisality and Materalability kifosain yeur blade (MLTS). Source 1 - Engineering judgement.	Source 1 - CHUZA, B and L scrips Hellcopter Botur Blade Laflure and scrap rate data analysis (JSAANBOR, technical report 71-58). Source 2 - Reliability and Midnetalability Analysis for Hodel Affigure 1 - Fugineering Judgewort.									

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

22 10

SHE F J

(a) Grackii										
		METHOD	FALUR	FAILURE EFFECT	FOTAL UNSCHED MAINT ACTINS	NSCHE (->	×0	200-	COMMENTS/COMPENSATING
	FAILURE MODE/S	DETECTION (4)	SUBSYSTEM (5)	AIR VEHICLE (6)	UMA 1000 HR SINDECE	SINBC		(£)		
2511-15 and portions of the blate 2511-15 and portions of the blate and "I leading and trailing edges, (a) Gracked houst-d to blade. (b) Debends					(00)	-				
(h) Debouds	l or broken	Visual Inspection, NU	STRRE to negligible degradation of blade performance	None					v	
	F	Vlauni Inspection, NDI	Degradation of blade performence dependent upon extent of debond- ing.	Nome					v. S	In process control Historia the prostbillty of deburding.
-										
										·
								·		

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

7-111412500-1AAH CHRR BLADE ASSEMINY

1

W.B S. NO. 7 11

SUBSYSTEM RUTOR CROHIT-MAIN ROTHER

原品の

REV. A. DATE 17 15 EL SHEET 9 0F

J. JONES

PREPARED BY

(3) Stages Stellerwices COM JENTS/COMPENSATING PROVISIONS 2 (11) v. Ę × ξ € _ € 2 TOTAL UNSCHED MAINT ACINS (7) UMA SOURCE Possibility of a out-of-track condition. AIR VEHICLE € FAILURE EFFECT ž. Degraded blade per-formative due to lack of aerodynamic stability. SUBSYSTEM S ME THOO OF DETECTION Visual Inspection Visual Inspection Ē FAIL URE MODE/S 6 (h) Bent or loose. (a) Cracked when opened, illows across to the adjustable tong: ere halane weights for locallation, rewoal or adjust adjustion allow and accurred by 6 occurs. MOMENCLALURE & FURCTION 1168 8 HINNE-BLADE ASSY

22 SHEET " OF

DATEL: L' BL REV A. . J. JONES

PREPARED BY

7-311412500-3AAH (PAR BLADE ASSEMBLY

W 8.5, NO. 7.11

SUBSYSTEM RUTOR GROUP-MAIN RUTUR

COMMENTS/COMPENSATING PROVISIONS 2 3 \$ ŝ A/# € HOTAL UNSCHED MAINT ACTINS UNIA SOURCE 3 Ē In allight to notice. AIR VEHICLE FAILURE EFFECT Mone SUBSYSTEM 3 Nex (4g 1b Je Mone Sound of loone objects during rator coast down and/or blade ME 140D Of DETECTION Summan and above. € Attems effective tuning of the blade in both the sepundace and renderly different times. The (a) Structural failure (weight, and renderly weight, AR boilt or weight). For the Re. I spor tube and AR for the Re. I spor tube, and washer. (b) Morked loose (bolt or nut). FAILURE MODE/S ĉ MESCHIL, ADHISTABLE - RIADE ASSEMILY, SWEPT TIP, HAIN POTOR, AAH COMPOSITE BLADES HOMENCLATURE & FUNCTION (2)

7-11141 2514 1-1 1-15 1-15

¥ 2 E

(3) Improving Common.

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

W.B.S. NO. 7 11

SUBSYSTEM: ROTOR CRUMP-NAIN ROTOR

PREPARED BY ... J. JUNIS - REV-- A .. DATE: 13-15-B1.

??

SHEET

г						 	7
	COMMENTS/COMPENSATING PROVISIONS	(12)					
Ì	200-	- Ε		v.	v.		1
	×	(9) (11) (11)		02.	٤		
- 1-]
ļ	0->		-				4
	ACTRS	UMA 1006 HR SOURCE	15.2				1
	MAINT ACTOS MAINT ACTOS	DO H	Ē				
		AIR VEHICLE (6)		House	Foseible sitght vibration.		
HER READ! ASSY	FAILURE EFFECT	SUBSYSTEM (5)		Degraded creation protection.	Degraded croston protection.		
7 11141250EF LAAH CHER BLADE ASSY	METHOD	DETECTION (4)		Vigual Inspection	Visual Inspection		
		FAII URE INCIDE/S		(a) Torn, sheddol, crostol.	(b) Debended/perling.		
	931	MOMENCLATURE & FUNCTION	FRESTON STRITE ASSY 1144 SHFIT TIP HAIN ROTOR, AAH 2516 TI COMPUSTE NAMES	Freelite creston protection of the blade. Consists of theirs plantic electment (facuse) 9.5 Inch wide, bonded along the leading edge of the blade.			
		186 F	7-111/48 7516-11				

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

HIGH TOTAL LANGE TOTAL WORKEN THE MODELS EFFECTS AND CALIFORNIA AND MAINTENANCE TO THE MODELS AN		=		9			ž			·	 	
TAILURE MODES, EFFECTS AND CRITICALLIY ANALYSIS ITMECAL TREAMED TO THE AND CRITICALLIY AND CRITICALLIY ANALYSIS ITMECAL TAILURE MODES TAIL	22	3	1	MSATI			a derivative der der der der der der der der der de					
TAILURE MODES, EFFECTS AND CRITICALLIY ANALYSIS ITMECAL TREAMED TO THE AND CRITICALLIY AND CRITICALLIY ANALYSIS ITMECAL TAILURE MODES TAIL	•	=		COMPE	20		5 \$ ± 4 ± \$					
TAILURE MODES, EFFECTS AND CRITICALLIY ANALYSIS ITMECAL TREAMED TO THE AND CRITICALLIY AND CRITICALLIY ANALYSIS ITMECAL TAILURE MODES TAIL	-	ě		SING			11160 11160 11160					
TAILURE MODES, EFFECTS AND CRITICALLIY ANALYSIS ITMECAL TREAMED TO THE AND CRITICALLIY AND CRITICALLIY ANALYSIS ITMECAL TAILURE MODES TAIL	٤	<		COMME			2 4 2 4 2 4 2 4 3 4 5 4					
WASE NO FILE. FALLURE MODES, EFFECTS AND CRITICALITY ANALYSIS IFFRECAS) FALLURE MODES FALLURE MODES FALLURE MODES FALLURE MADES FALLURE MODES FALLURE MADES FALLURE MADES FALLURE MADES FALLURE FALLURE FALLURE MADES FALLURE FALLURE FALLURE FALLURE FALLURE FALLURE FALLU				200-	<u>E</u>		.	v.			 	
WASE NO FILE. WASE NO FILE. CALIFORNIA MANALYSIS LYMICALLY AND LINES. CALIFORNIA WASHINGTON TO ANY	SHE	AE C					¥	š.				
WARE NO FILE. FALLURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMUCKAL FALURE MODES WETHOD FALURE MODES FALURE EFFECT FA			- 1								 	
WAS NO 11. FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMECAL FAILURE MODES FAILURE MODES FAILURE MODES FAILURE MODES FAILURE EFFECT (A) Fracture/fractud (b) Salted or worred (c) Fracture/fractud (d) Missal Foresterin Foresterin Foresterin Foresterin FAILURE FFFECT FAILURE FFFECT (d) Fracture/fractud FAILURE FFFECT FAILURE FFFECT (d) Fracture/fractud FAILURE MODES FAILURE FFFECT (d) Fracture/fractud FAILURE FFFECT FAILURE FFFECT		2									 	
WAS NO 11. FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMECAL FAILURE MODES FAILURE MODES FAILURE MODES FAILURE MODES FAILURE EFFECT (A) Fracture/fractud (b) Salted or worred (c) Fracture/fractud (d) Missal Foresterin Foresterin Foresterin Foresterin FAILURE FFFECT FAILURE FFFECT (d) Fracture/fractud FAILURE FFFECT FAILURE FFFECT (d) Fracture/fractud FAILURE MODES FAILURE FFFECT (d) Fracture/fractud FAILURE FFFECT FAILURE FFFECT		Ē.		AC18	RING	- 3					 	
WAS NO 11. FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMECAL FAILURE MODES FAILURE MODES FAILURE MODES FAILURE MODES FAILURE EFFECT (A) Fracture/fractud (b) Salted or worred (c) Fracture/fractud (d) Missal Foresterin Foresterin Foresterin Foresterin FAILURE FFFECT FAILURE FFFECT (d) Fracture/fractud FAILURE FFFECT FAILURE FFFECT (d) Fracture/fractud FAILURE MODES FAILURE FFFECT (d) Fracture/fractud FAILURE FFFECT FAILURE FFFECT		7		DIAL	ON HR	0 10						
## 25 NO JII. PALLURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMICONS. PALLURE MODES FAILURE MODES FAILURE MODES FAILURE FEETER FAILURE FEET												
## 25 NO JII. PALLURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMICONS. PALLURE MODES FAILURE MODES FAILURE MODES FAILURE FEETER FAILURE FEET		ž			מנ							
## 25 NO JII. PALLURE MODES, EFFECTS AND CRITICALITY ANALYSIS ITMICONS. PALLURE MODES FAILURE MODES FAILURE MODES FAILURE FEETER FAILURE FEET		PANE			1 VEH							
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	₹	Ĕ		5	¥			<u>.</u>			•	
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	ב ב			1 6 6 6 6			ž	ź			 	
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	-			AH UR				ž.				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	X Si		<u>,</u>	•	168		t de ct	1				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Ž		F		Sys (S)		egga egga	7 = 7 = 7 = 7				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	∀ ≻		¥		,		160 o	10-01 c				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	¥F.		1 × 1				f'ossi h Lade	2 5 £			 	
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	1		2									
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	5		Š	9	£ 25 €		<u> 5</u>	<u> </u>				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	A		12500	*	130		sual speci	Proct				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	CTS		7117	-			<u> </u>	<u> </u>			 	
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		:	•									
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	ES, E											
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	9				006/3		į	-				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	R S					ļ		<u>.</u>				
(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Ĭ	=			Ę		red/t	÷				
	¥	0					Tarts	=				
		# B					(3)	3				
ITEM INCOMENCE ATTACH BUSHING, ATTACH, SMETT TIP MAIN NOTER, AAM COMPOSITE FOUR METALLI bushings are permonently attached at the respondations expert the bight radial loss exerted by the standard bear attached by the standard loss exerted by the standard by the sta											 	
ITEM ITEM ITEM ITEM ITEM ISON CONTROL OF USE O		1		1	1108	T TIE	7 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
RESYSTERS RUTUR GROUP PAINT INC. 18 ROMERCIATURE		Ko lok			1 F C	Sub-P	First by River Barrers					
ME RUDN CRUE" P. 11141 HAIN WITHE, AIT HAIN WITHE, AIT HAIN WITHE, CINE PETERSTORETY PETERSTORET		2		3	3 8	AAH C	2 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5					
### ##################################		<u> </u>			ACL AT	Tive.	rall! nt fy to re loat ble b					-
100 (100 (100 (100 (100 (100 (100 (100		Š			PORE.	7 T T T T T T T T T T T T T T T T T T T	reance refer					
25 11 14 1 2 1 1 14 1 2 1 1 14 1 2 1 1 14 1 2 1 1 14 1 1 1 1		ELE ELE		-	<u> </u>	+					 	
8 [[##] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		VSTER			<u> </u>	¥ 3						
8 Ladada and a second a second and a second		Sans		_		1 =					 	

J. HONES

PREPARED BY

REV. ... A ... DATE AD 15-83 22 ŏ SHEET

SUBSYSTEM: RUTOR CREMIT-MAIN ROTOR

W 0.5. NO. 7 11

7-111412500-14AH CHR - BLADE ASSEMBLY

(3) India 11the spire COMMENTS/COMPENSATING PROVISIONS 2 300 v. У. v: Ş ۲. \$2 Ē <u>-</u> 8 HOTAL UNSCHED MAINT ACTUS (7) UMA SPURCE 142 Possibility of slight vibration. Same as above (b). AIR VEHICLE 3 FAILURE EFFECT Nine Degraded blade per-formance. Same an above (b). SUBSYSTEM Z None 06 TECTION FAILURE MODE/S Ē WEIGHT ASSEMBLY, LEADING EDGE NOMENCLATURE & FUNCTION
(2)

G-9

7-31141

¥ 2 E

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

W. B S #0 7 11

SUBSTREE ANTION LINOUP-NATH BOTTOM

MEV ... A. DATE: 12 UE 81

PREPARED BY

Г			7		 _	
	COMMENTACOUNT IBA 1 ING PROVISIONS		(1.2)		Other apar libes perve as alternate load paths.	Same as above (a). will detert debunding redundary fa provided by dealin.
h	100-	_	ョ		<u> </u>	w
+	×	_	1		ş	8
ļ,	8-	_	2			<u> </u>
	8 ~>	_	8	-		
27.51	2			7		
14747	MANNY ACTIONS	3	1000 HR SEUTE	£.		
		AIR VEHICLE	Ē		dicine.	Rone
	FARUME EFFECT	SUBSYSTEM	2		hegraded perintmante	Name as above (a).
	26 THOS	DETECTION	Ī		MDI ter halque	
		FAN WRE MODE/S	Ê		(a) (ran hed (one)	(h) Separated/konding wilds. (me) Wil technique.
	201		C)	SPAR THRE	There are I apar tubes, each agriculty as an attendate lead post in race of ballistic domage and also providing a mail incoment of tersional attitues. Individually according to the second second second from Review 49.	
,		1	12		7-1114 2511 1501 1101 1101	

DATE: 12-15-81 W.B.S. 600. 711.

1 1 1 1 1 1 1 1 1 1	100 100				BRE T1908	FAILUR	FAILURE EFFECT	MAINT ACTION	ACTIES	>	×0	2000	COMMENTACEMENT STATIONS
the convention and a co	the Action of the first and and to the first	201	MONE INCLATIVING & FUNCTION	FAMUNE MODE/S	9616C110W	\$86£VSTEM (S)	AIR VEHICLE (6)	315	MOUNTS		=	- 팀	
The cure account grades up a) Channel, P/B J Hist/27 Vitant Impecting Parking of eight Promibility eight Promibilit	The cure accessive matter up as 1 Channel, F/H 2 11141/2/11 The state of the control of the con							.	3				
H.D. I. prefugation of blade where the same as above the same as a same	H.D. 1. degradation of bilder virtual integration of bilder vibration of bilder vibration of bilder virtual integration of size as above Same as above Same as above Same as above Integration of spiles I. Separation of Same as a spile of vibration of spiles I. Amaling virtual inspection Same as a spile of vibration of Same as above Same as abo	<u>;</u>	the core assembly maken up the AFL, pertion of the blades africal and adds to the		Visual Inspection	Fourthilley of alight	Completitey of allight				č		
b) Core, F/W J-1114125/2 1. Separation of spire foints 1. Separation of spire foints 1. Separation of spire foints 2. Created in spire 2. Created 2. Created 2. Created 3. Created 4.11.1. Mone 1. And tog every 4.11.1. Same as a) I above 1. And tog every 4.11.1. Same as a) I above 5. Created 6.11.1. Same as a bove 7. Created 7. Created 7. Created 7. Created 8.11.1. Same as a bove 8.12. Same as above 9.12. Same as above 9.13. Same as above 9.13. Same as above	b) Core, P/W J-1114125/2 1. Separation of spiles foints 1. Separation of spiles foints foin		characteristics and total ourse at 11 total of the contract of	^	N.D. I.	degradation of hande performance Same as shove	vibration Space as above				<u> </u>		
1. Separation of splice found in gradies in the specific terms of the specific terms of the specific terms in	1. Separation of Aplice [Dints Dints Print Dints		Experies from the control of the con	: 5	A. B. 1.	Nime	Monne						
Trailing edge lunco. P/N 1-111412316 Usual Impertion Same as a) Labove Charibility of vibra- 1. Andian voids N.D.1. Almadian voids Visual lunpertion Same as a) Labove Same as above 2. Cracked Same as above 1.05 M	Trailing edge lunco. P/N 1-11442346 1. Aunding voids Visual impection Same as a) 1 above Fonsibility of vibra- p.D.1. Gracked Visual lungection Same as a) 1 above Same as above Same as above		edge lingit, T/N 7-1114[2516									v.	Skin to cure bond waid eliminate any deforma- tion due to aplice
Finding wilds Vienal impection Same as a) Labore Finability of whre- The due to alread Cracked Same an above Same an above 30 Same an above .30 Same an above	And ing wilds Wisnel impection Same as a) Labove from the to alried and the to alried and the to alried and the total and the to												separation.
Cracked Visual Impection Same as show Same as show	Cracked Visual Impection Game as a) I shove Same as above		-		Visual inspection	Same as a) Labove	Foundation of wibes-				- e		Vibration due to hiade of-track depends on ami
					Vinual Impection	Same as a) I shove	JANG W SMCS				7 5		Trailing edge subjected to light loads univ
			-		•								
												· · · · · ·	
			-										

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

SUSTINE ANTHE CROSS-MAIN ROTTE

COMPENTACOMPENSATING	£113		A crack, depending on all and location, would de- crease the limpulme atiff won-resulting in a cou- of-track condition with a hange of paper					
200-	1 (1)		v	v. 2				
×			<u> </u>	9.5	 			
Bu	5				 	 		
S S	3	===			 			
FOTAL BRISCHED BLAIRT ACTIVS (7)	AND AND SOURCE	<u> </u>			 	 		
FAILURE EFFECT	AIR VEHICLE (6)		No immediate offect.	founthie minutes abort				
FAILURE	\$U\$\$Y\$7£W (S)		leggradation of hlade perference.	Loss of blade periormance.				
## THO	DETECTION (4)		M) terholque	NDI trchalque				
	FAILURE MODE/S		(a) Gracked	(h) Debomled, delumlanted				
201	ROMERCIATURE & FURCTION	SPAR CAP ASSEMBLY	7-31141 Primary members that provide 733). Ing wiles affiliated the New York of 49, the maneably constant of 1-31, -51 and members of 1-31, -51 and members and sare such a graphite inner skin.					
	200		7-1143 237. 31. 2. 6				- · · · · · · ·	

: . : **2** SWEET: 11 ... 0F

REV. .. A ... DATE I' I'MI ...

COMMENTA/COMPENSATING PROVISIONS

Ē

1. JOHES

PREPARED BY:

7-111412500) AN CHER BLADE ASSEMBLY

W.B.S. NO 711.

SUBSYSTEM RITTOR CROIP-NAIN ROTOR

3

FAILURE INDDE/S 晝

MOLENCE ATUNE & FUNCTION CT)

225

1168

4.5 | 5.4 (10) (01) (0) **\$** 5 5 MAINT BUSCHED UNA STUTCE **F** long of hinde tornional Ponethility of vertical rentraint. AIR VEHICLE • No effect FAILURE FFFECT Finalistic degraded blade SUBSYSTEM (2) Nut technique of le visual insper-NUI technique or L METHOD OF DETECTION

(a) Cracked

Privides whis reinforcement to meet blade torstoned requirements. Consists of a lower and upper assembly interested from Kevier 49.

7-31141 2518 RSC,-13

SKIN, POUBLPR, INDIARD

bould be discovered on

Rinde come angle may change more than other hinder due so defective doubler.

v. z

(S)

(b) Debonded, delaminated.

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

W.B.S. #10, 711.

BOSYSTEM: MITTIN CHOUR-PARIE BUTUM

PREPARED BY ... 1_100ZS

SHEET- 12

CERTIFICATION CONTRACTOR	ES.			Blade cons angle may differ from angle of other bladen.	
	- €		v.	₩ 2	
Ø	8		=	£ 6.	
8-	Ē				
 >		~			
ACTION	SDIFFICE	79			
# V W		.00.	_		
	AIR VENICLE (S)		No elfert	Possibility of vertics vibration.	
PAL BAL	8U05V37 EM			Degraded blade per- formance.	
10E THOS	06TECT108		MDT technique	MI technique	
	FAH DAE GODE/3		(a) Grached	(c) leburaded, delaminited.	
	INDICERCIATIONE & FUNCTION	PUBLER HINGARD CAP	froutden cap teluforrement to meet blade turnional regularments, frantsty of 21 Kevins 40 fabricated plies.		
	22	5	7-31141		
	A LOTTON	FAMI UNE WOOR'S DEFECTION SUBSTANCE & FUNCTION (S)		FARLURE STORESTER FARLURE GOODE'S SALVER EFFECT SALVER	FARLWARE BOOKES OFFECTION SAILWALE OF TAN UNE WOOLES OFFECTION SAILWALEFEET TO THE TAN VENCIE OF THE T

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷	FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)	PREPARED BY J. JOHES	7-181412300. MAN CHAR BLADE ASSEMBLY	RETHOD FAILURE EFFECT TOTAL WEEKEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- E	1 / 241 100.	MDI terhalque ha effect hardine ha effect	MDI terbalque (Loam of root atructural Mo effect). 50 S integrity and blade performance degraded.			•
÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷	AND CRITICALITY ANALYSIS (FMECA)	PREPARE	ELATSON, JAM CHAR BLADE ASSEMBLY		SUBSTYSTER		No effect				•
	FAILURE MODES, EFFECTS	:			FAILURE MODE/S						
					HOMENCLATURE & FUNCTION	VERSE, INMARE - BLADE ASSY, SMET TIT MAIN ROTTM, AAN CONFINSTE MARKS	Fills the triangular coulty between the inhard longs perks and healthing to ensure (itselfund litterity of the hinde root area, consists of reels laprognated willed E. glans (libers.			-	

SUCCESSION FOR CHARP-MAIN MOTOR

SHEET 14 OF 22

PREPARED DY J. HWIFS

	COMMENTS/COMPENSATING PROVISIONS	113			Practitity of out-of- tark due in change in (ip air fell improcess control limits delesi- nation practitities.		
ļ	200	- 11		ı,	٧.		
	×			\$	ş]
-		-					4
ŀ		E .					┥
	ACT ACT	<u> </u>	3				_
	MAINT ACTOS	UNIA SOUNCE	<u>ē</u>	·····			
	EFFECT	AIR VEHICLE (B)		Pr. of fer t	reathility of vertical vibration.		
LAPE ASSPRIN	FAILUNE EFFECT	\$485Y\$1 EM (\$)		Degraded swept tip structural integrity and blade performance.	Losa of merpt tip atturtural laterity and blade perintmance.		
7-311412500-WAN CHRB BLANE ASSEMBLY	20 THOS	0£7£C710#		MDI ter halque	mand technologie	·	
1111-1		FAILURE MODE/3 (3)		(a) Cracked	(b) Debonded, delaminated		
	====	MOMERICATIONE IN FUNCTIONS	CORP. ASSIVIBLY - CONTOSITE, AAN NAIN ROTOR NIADE, SUEPT TIP	the sweet the region to ensure atwented biterity. Comisin (a) Erached atwented biterity. Comisin (a) Erached noted (there and form.			
		215	7-11141				

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

_						 	 _
	COMPENSATING PROPERTY OF THE P			finish be found on dally finisher tion and repaired an required.	change in ote foll may cause an out-of-trait termition. The process control lists delani- ation possibilities.		
[1 (1)		v.	v. E		╛
Ε	<u> </u>	=		9	25		_
Ŀ	5~		_				
ŀ	*					 	╝
MAC ME IN	ACTRS	UNIA SDUMER	211				
	MANUT ACTORS	Less Han	ž				
		AIR VEHICLE (B)		No immediate effect.	Posibility of Vibration.		
7-31141250C-34AH CMRB BLADE, ASSEMBLT	FAILURE EFFECT	\$UBSYSTEM (S)		Degraded blade performance.	lons of binde preference.		
7-3116125DC-34AH (BM 1440	DETECTION (4)		Vinnel Inspertion	MDI, vimual inaper (ina		
		FAILURE MODE/S		(s) Cracked	(h) Delaminated, dehonded.		
		HOME MELATURE & FUNCTION	SKIN, OUTER	Provides a major portion of the binds training at ifferen- and above the fore the sport caps and the trailing rige longe. Complain of ever cost insume Constitue of 0.062 forby the kewise 49.			
		20	E	7:45			

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

W.B.S. NO. 711

BREET: 16 0F 27

	17.8		90138	EAILBR	FAILUNE EFFECT	TOTAL WRSCHED MAINT ACTES (7)	ACTE OF THE OF T	*->	×0	200-	COMMENTS/COMPENSATING	
	NOMENCLATURE & FURCTION (2)	FAR UPE MODE/S	9616C1104	SUBSYSTEM (5)	AIR VEHICLE 66)	TOWNY STRUCTS	SOUNDS	£		- (t.) B()	213	
ALECTRICAL TOTAL OF THE PROPERTY OF THE PROPER	SUPER HAIN SCHEEN NAME ASSY SUPER THE NAME PITTING AAR FEMERATTE, NIAMES			·		10e ·	24	ς	-			
thicids mes in lightni Incens he inb	Shirlds all metallic components in the blade, provides lightning profestion of the blades and provides a continuous electrical path into the look (the wheld is continuous electrical path into the look (the wheld is con-	(a) Crarked, discontinuities.	M) exhalque	Punitle loss of some lightering shield pro- tertion.	No offect.				<u>e</u> .	v.		
100 × 200 ×	ductively binded to the visite from 1840 of 200 of	(h) Bonding wride.	mi erhalque	Possibility of some loss of blade per- formance.	Possibility of vibration.				3 01	K K	Change in airfuil due to nodel, may remee an out-of-track. In-process control listin the pussibility of bond- ing voids.	
				·								
	-											

PREPARED OV

W. B.S. #0 711. SUBSTREM MOTOR CHNIP-MAIN ROTOR

COMMENTACIONE	PROVISIONS	(12)		<u> </u>			
900		(10)		ν.	*		
<u>8</u>				\$	ş		
		£	- -			 	
0 v	T					 	
ACTA		1					
16TAL BRICHED MAINT ACTHS		SOUNDER WHEN					
(FIFFCE		AIR VEHICLE		Mone	Kone		
7-11412'SG - IAAN CONS BIANT ASSESSED.		SUBSYSTEM (%)		Fontbilly of not being able to adjust balance.	No offect		
7-1141230C- DAN		0678CT1010 (4)		Found during Inspection of halance adjust- ment.	M) rechifque		
		5		(a) Namaged throads	(b) Ronding voldn		
	11610	SOME SCLATURE & FUNCTION (2)	UFICIT, FURNARI TIP-READE ASSEMBLY SHEPT TIP NAIN BUTOR, AAR CONTUSTE BLADE	its sted in the muthouse end of the Mr. I apar time, provides for effective tuning (of the blade in the apamelae and chordwise direction. Fabricated frem 11-474 (2056) integrally wound into the Spar			
		225	=.				

NEV A DATE 12-15-81 PREPARED BY:

W.B.S. NO 711

SUSSYSTEM: RUTHE CROUP-NAIN RUTCH

7-311412500-3440 CHRB BLADE ASSEMBLY

COMMENT S/COMPT NS AT INC.	113				
200-	- 8	V.	v		
Q	1	-	\$		
B-	_				
>	2				
ACTR	§	<u> </u>			
TOTAL UNSCHED MAINT ACTRS (7)	UNIA SOUNCE	Ē			
	AIR VEHICLE (8)	None	Mone	-	
FAILURE EFFECT	SUBSYSTEM (S)	Fossibility of mit heing shie to adjust balance.	do effect		
00+1 3m	9ETECTION (4)	Found dur Ing Inspection or balance adjust- ment.	M) E technique		 ·
	FAM.URE MINDERS (3)	(s) Damageel chresds	(b) Bornling voids		
1	HOME HEL AT UPE & FUNCTION	MADE ASSY, INTOR, AAH INTOREG end FF tube; For Eve tuning For Eve tuning For Eve Table			
	215	=.			

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA)

... 22 ...

NEV. ... A ... DATE 12:15:41

PREPARED BY: J. JONES

		16-2	7-311412500- IAAN CHORR BLADE, ASSEMBLY	RIADE ASSEMBLY			1	١-		[٦
	3		BEET HOD	FAILUM	FAILURE EFFECT	MAINT ACTIVE	20 SE	E-	×	200u	COMMENTACIONE MEATING PROVISIONS	
ř	MOMERICATURE & FUNCTION	FAILURE MODE/S	961601104	SUCCESSION	AIR VEHICLE	UMA SOUNCE	SOURCE !	(E)		111) (611)	81	
2-1141	AAFEING STRIF-BLADE ASSEMALY, SERPET IN ANN BATTING, AAH	T.	Z			S/a	241					
<u> </u>		(a) Gracked	Mil technique and/or inspection when replacing	ko effert	Mone				<u>۽</u>	v.		
		(h) Bonding voids	MI technique	No effect	Mone				š	v.	in-process central lister the parachility of head- ing worlds.	
		(c) Errobed/poomed	Viena	Degended performance.	Poneibility of alight vibration.		····	 	*	w		
								. -				
	·											

PREPARED BY J. 10MFS REV A DATE: 12-11-R1

7-1114179000, AAN CHER BLADE ASSEMBLY

W 8 S. NO. 711

SUBSYSTEM: BUTTING CHOMP. MAIN BOTTON

COMMENT S/COMPERS AT THE	(t)			the process control lists the possibility of hond- ing wolds.	
200.	j (11)		y,	v.	v.
Q	(16)		٥	ĉ.	5
	=				
0->	8				
101AL BRSCHED MAINT ACTUS (7)	UNIA SDORES	31			
MAN	5.8	870.			
FAIL UNE EFFECT	AIR VENICLE		Manne	Rone	Ponsibility of slight vibralies.
FARUM	SUBSYSTEM		B) effect	No effect	Degraded performance.
90H13W	D£ TÉCTI ON		MDF Lechnique and/or inspection when replacing atrip.	M) technique	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	FAILURE MODE/S		(a) Crarbed	(b) Acnding voids	(c) firended/premed
831	NOMENCLATURE & FUNCTION	RACKING STRIP-BLADE ASSEMBLY SMED THE MAIN MOTHER, AAN LUMPHSTIF BLADES SLEINLESS STREE BACKING STEID for the tip Chemo plastic elss tomer erosion steip.			
	228	= -			

BESTER BUTIN CHAIP MAIN MITTER

DATE: 17-15-61

PREPARED BY: 1. functs

COMMENTACOMPENSATING	Qu)		was deferred on also and location of crack and location of crack	
200-	- E		# 5 E	
×	- =		\$ <u>\$</u>	
	£ 5	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
		- 17		
TOTAL UNICHED MAINT ACTION (7)	ME SE	. Š	<u> </u>	
	AIM VEHICLE (B)	- ·	Formal billity of cut-of- track wibration	
FAILWRE EFFECT	SUBSYSTEM (S)		ible degradation of	
ME 1900	0€T€CT10# (4)		Vinual, inspection Youn	
	FAILURE MOBERS (2)		b) Gracked b) Bonding valds	
	NOMESCLATURE & FUNCTION	HINCH-IRIN IAR	Fabricand from 1016 sheet Al. a) Gracked try 2124-71. The hant is lecated on the top side and the 1-1 is located on the buttan of the trailing rough from Sta. 175.50 to Sta. 246.00. b) Bonding voids The trit tab is hest up or from star to acrodynamically change the blade airfull analyng it compatible airfull airful	
	1	1- N1412	P	

FAILURE MODES, EFFECTS AND CRITICAL ANALYSIS (FMECA)

94 947 97 13 130 89	77 LPB 80.	2-111412509-3		2	RU FAILURE RATE		1	23.6		BATE 12-15-81
1				400111 20P 117 5		SAL SHE MATE		-	1	
	11.0	411111	DAE 7 200	TW1011		E		- 8 	~	COMMENTANCOMPERSATING
225	PANT DE ROOG HELAT DRE D. GARCTORY (7)	(3)	10)	жс (2)	SUBSYSTEM (8)		Ĭ.	= E	=	=
1	NAME OF POSE					ž.	72			
		(a) Be-icer blanket 15-200-21 p(H 2-11141254A				~~~			 	during of vibration, due to rotor impalance will depend on security
	= :	=	MD) Lechalque	Foreshillty of degraded de-tring in that rose.	Possibility of vibration.				2	
	braised to the leading edge of the blade.	2. Bonding wolds.	Mil terbatione	to effect on destring.	No effect on de-foing.				8	
	divided internally into five	3. Open in electrical wiring from connector	fress-to-test and/ or with system on,	toon of de-tring capability possibility of stysion for that hinde.	Preschilly of mission about due to inhalanced				(. E \$ 5	depend on other tion
	chang the leading edge of the blade. Fach true is brated sequentially to	to blanker.	rotor static, check blade for heat		rator.					hulld-up on that
	arely the bond between the live and the blades surface to allow centralises and	(h) Receptacle-electrical								Some na abrue (a).
	recompanies forces to sweep	4e-1c1sg. 17-20025		-						
	de-free ant extends over	1. open/shorted plus	Press-to-test	Lonn of the Iring enpublishy for that binde.	Same as above (a) 1.				8	
	auriace there length and	2. Bent pina/cracked	Press-to-test	Same as shows	Single an above				₹.E	
	blade teading odge.	(c) Rectabell - restrains	Visual inspection	المرابع	Hine				v. e	اجدانيسيد
		connector bracket anay. 15-200-25. P/n 163723-15A18A					-,			
		1. Cracked/lonse				··············				
		(4) Connector bracket many 1'-280-26, p/n -316(125)?) 	•	Ron			······································	8 .	
		2, Fractured	Vimal	Acre, bu' may result in a secondar Jalure, such as a touse connector and/or broken wire,	No offers		<u>, , , , , , , , , , , , , , , , , , , </u>	·····	<u> </u>	
1,000							1	$\frac{1}{2}$	1	(3)

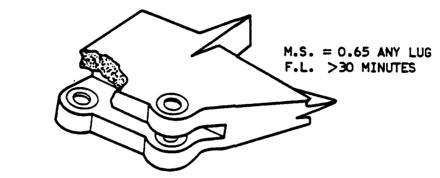
APPENDIX H STRESS ANALYSIS

The static and fatigue stress analyses for the CMRB show that it is satisfactory, structurally, for the mission of the AH-64A. For the undamaged blade, the analysis shows that there will be no failure at ultimate load (1.5 x limit load), and negligible permanent set under limit loads. Table H-1 summarizes the minimum margins of safety for critical regions of the blade. Positive margins are shown throughout. This finding was verified by the laboratory tests.

TABLE H-1. MINIMUM STATIC MARGINS OF SAFETY

Blade Station	Item	Load Condition	Type of Stress	Margin of Safety
39	Attach Lugs	RPM = 289 V = 180 Kts M _z = 3.5	Tension in Kevlar Windings	0.40
191.7	Constant Section	RPM = 289 V = 180 Kts M _z = 3.5	Compression in Kevlar spar longos in the constant section	0.06
87	Constant Section	RPM = 289 V = 180 Kts M _z = 3.5	Shear due to torsion in ±45° layers of the constant section	0.05
89	Constant Section	RPM = 0 Max Torque V = 0 Kts n = 1.0	Compression in Kevlar spar longos after the T.E. longos have buckled	1
270	Blade Tip	RPM = 376 V _f = 150 Kts n _z = 3.5	Tension load applied to tip weight housings and blade tip	High

The fatigue life of the CMRB has been substantiated by a combination of analysis and component fatigue tests. In using the test data, the endurance limit is reduced for scatter effects according to Table H-2. The life for the various sections of the CMRB are presented in Table H-3. That the CMRB has an adequate static margin of safety and a fatigue life in excess of 4500 hours has been verified by laboratory test of full-scale specimens.


TABLE H-2. L-N CURVE SCATTER REDUCTION FACTORS

Number of Fatigue Test Specimens	Percent of Mean L-N Curve Used
1	50%
2	65%
3	75%
4 or more	Statistical analysis $(M-3\sigma)$

TABLE H-3. FATIGUE ANALYSIS - SUMMARY OF COMPONENT LIVES

Blade Station	Item	Condition	Life
39	Peat I was	Weighted Fatigue	4,500 hours
	Root Lugs	Ground-Air-Ground	100,000 hours
39	Root Close-Out	Weighted Fatigue	Infinite
55	Root Doubler	Weighted Fatigue	4,500 hours
84	Constant Section	Weighted Fatigue	4,500 hours
160	Constant Section	Weighted Fatigue	4,500 hours
192	Constant Section	Weighted Fatigue	4,500 hours
270	Tip Components	Gag	Infinite

Ballistic survivability calculations show that the CMRB can fly a minimum of 30 minutes after being damaged by a 23mm HEI-T projectile. Figure H-1 summarizes the results of the survivability analysis.

M.S. = MINIMUM STATIC MARGIN OF SAFETY

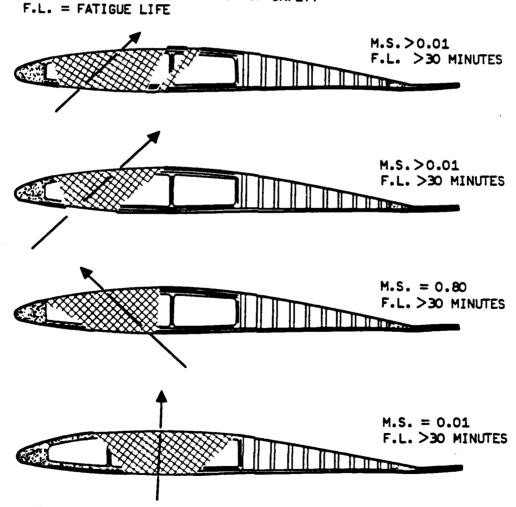


Figure H-1. Ballistic survivability summary - 23mm HEI-T threat.

APPENDIX I MASS PROPERTIES

The mass properties of the CMRB are summarized in Tables I-1 and I-2. The figures show the distribution of weight, chordwise center of gravity, and pitching inertia along the span of the blade. Table I-1, the rotor blade group (shipset of four blades) weight chart specified by Reference I-1, shows a CMRB group weight of 603.2 pounds - a 24.6-pound reduction from the metal blade group. Table I-2 documents the CMRB center of gravity characteristics for three zones along the blade span that were required for blade dynamic analysis. The polar moment of inertia of each CMRB is 993 slug-feet-squared as compared with 1017 slug-feet-squared for the metal blade. This is anticipated to have a negligible effect on autorotation performance.

I-1 Military Standard - Weight and Balance Data Reporting Forms for Aircraft (including Rotorcraft), MIL-STD-1347A Part II, 30 September 1977.

TABLE I-1. AH-64A ROTOR/BLADE GROUP WEIGHT

		Metal	CMRB			
1.						
2.						
3.		ļ				
4.						
5.						
6.						
7.						
8.	Spar/Tube-Front	87.1	143.6			
9.	Spar/Tube-Intermed.	64.3	14.4			
10.	Spar/Tube-Rear	65.1	19.6			
11.	Interspar-Cover		107.2			
12.			,			ľ
13.		}				
14.						
15.	Interspar Adhesive	11.5	-			
16.			 			
17.						
18.				ļ		
19.						
20.	Leading Edge-Cover	94.6	16.4			
21.						
22.						
23.						
24.	L.E. De-Ice Blanket	13.9	6.8			
25.						
26.						
27.					1	
28.	Trailing Edge-Member	-	20.0			
29.	Trailing Edge Cover	25.5				

TABLE I-1. AH-64A ROTOR/BLADE GROUP WEIGHT (CONT)

		Metal	CMRB		
30.					
31.	Trailing Edge Ribs	0.9	-		
32.	Trailing Edge-Core	8.1	6.8		
33.					
34.					
35.	Trailing Edge-Adhes	12.1	5.2		
36.					
37.]
38.					
39.					
40.	Tips	33.9	16.0		
41.					
42.					
43.					
44.				ļ	
45.	Balance Weights-Tip	14.7	12.8		į
46.	Bal. WtsLead. Edge	95.1	152.8		
47.					
48.					
49.	Trim Tab	11.0	2.0		
50.					
51.	Root End-Fittings	73.1	57.6		
52.	Root End-Fasteners	10.5	3.6		
53.	Exterior Finish	6.3	5.2		
54.	Static Discharge	0.1	0.8		
55.	M/R Mfg. Allowance	-	12.4		
56.	Column Totals	627.8	603.2		
57.		<u> </u>			<u> </u>

TABLE I-2. CENTER OF GRAVITY CHARACTERISTICS

			သ	Center of Gravity	<i>\</i>	
						Dynamic
		weight (1b)	BS (in.)	Chord (in.)	% Chord	Criteria % Chord
CMRB	CMRB Root (BS 37 to 82)	41.34	55,34	5.78	27.5	≥27.6
	Mid (BS 82 to 244)	72.34	162.95	5.37	25.6	£26.5
	Tip (BS 244 to 288)	33.62	266.13	5.25	25.0	<u><25.0</u>
	Total	147.30	156.30	5.46	26.0	26.4
	(Shipset: 589.20 lb)*	lb)*		(Spanwise moment = 23 , 500 lb-in)	nent = 23, 50	00 16-in)

*603.2 lb in Table I-1 includes manufacturing allowance.

APPENDIX J AEROELASTICITY AND MECHANICAL STABILITY

The stability of the CMRB and support structure was investigated by a linear eigenvalue analysis and by a nonlinear transient analysis described in Reference 8. The eigenvalue analysis couples an eleven-cell single blade to a simple model of the hub flexibility and fuselage rigid body degrees of freedom. The rotor support flexibility and fuselage rigid body degrees of freedom are necessarily isotropic for this linear analysis. Coupling terms are included to relate blade pitch changes to hub motion. This idealization of the system is adequate to represent the advancing and regressive cyclic modes of the system, the most important of which is the advancing whirl mode. The nonlinear transient analysis allows the anisotropic properties of the rotor system to be represented and includes all four blades, lateral and longitudinal control stiffnesses, hub constraints, fuselage free-body modes, and two fuselage bending modes. Each blade is represented by five degrees of freedom: two flap modes, two torsion modes, and one lead-lag mode.

Cyclic and collective resonance diagrams, including the influence of aerodynamic forces, are presented in Figures J-1 and J-2, respectively, and show good separation between natural frequencies and forcing functions for all modes except for the second torsion mode and the 7Ω line. However, this mode is very well damped and was impossible to excite during the whirlstand test, and is considered to be acceptable for the CMRB. Figure J-3 shows modal damping ratios as a function of rotor speed for a series of forward speeds, and Tables J-1 through J-3 show the corresponding natural frequencies. Forward speed is accounted for by applying aerodynamic forces corresponding to the 90-degree azimuth position (advancing blade).

Figure J-4 shows the whirl mode damping for the severe condition obtained from the linear eigenvalue analysis. The most critical condition ($\theta_{3/4}$ = 6 degrees, N_Z = 3.5) has a stability boundary above 130 percent N_R .

Advancing lag mode stability boundaries are presented in Figure J-5 and show a low boundary for the case of high load factors at low collective pitch settings (cyclic pullup in autorotation). However, in comparing this figure with Figure B-7 of Reference J-1, the CMRB is shown to have an improvement in the advancing lag mode stability boundaries over that of the metal

J-1 Silverthorn, L. J.; Childers, H. M., and Neff, J. R., <u>Preliminary</u>

<u>Aeroelasticity and Mechanical Stability Report YAH-64 Advanced Attack</u>

<u>Helicopter</u>, Hughes Helicopters, Inc. Report No. 77-X-8001, June 1976.

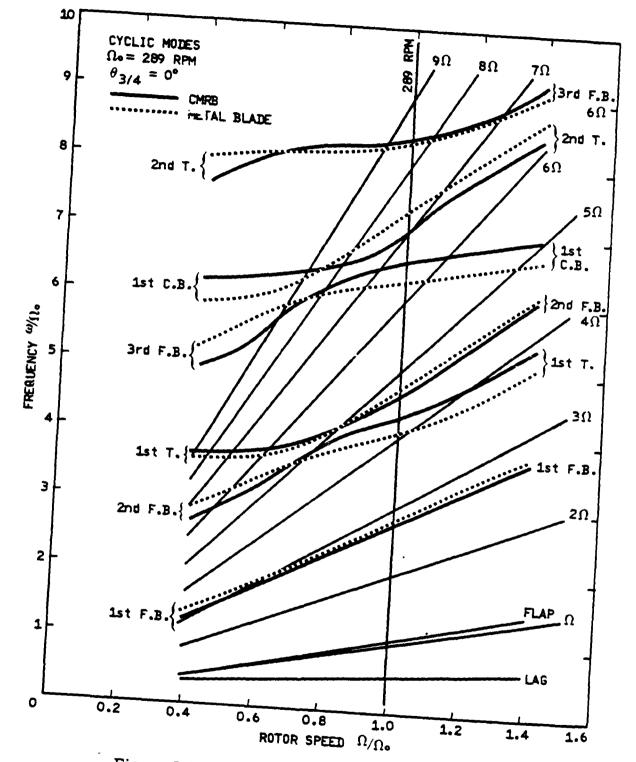


Figure J-1. CMRB cyclic resonance diagram.

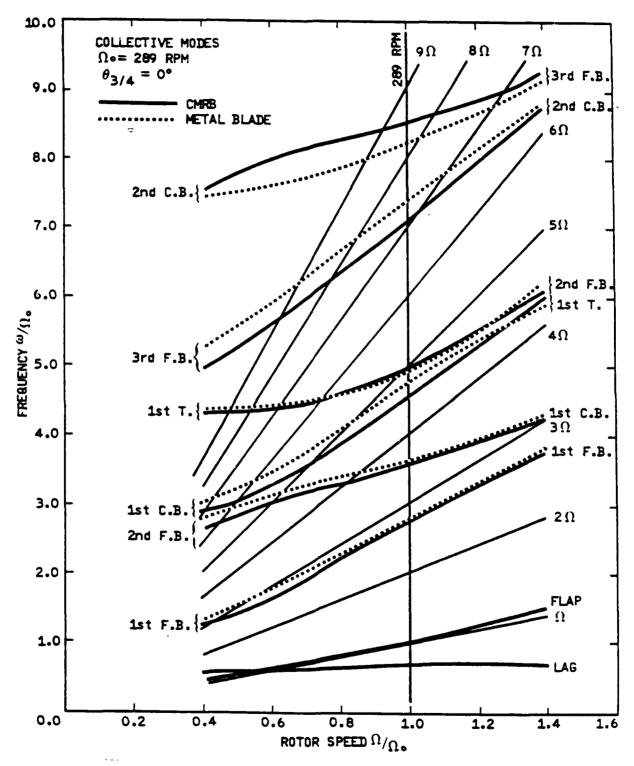


Figure J-2. CMRB collective resonance diagram.

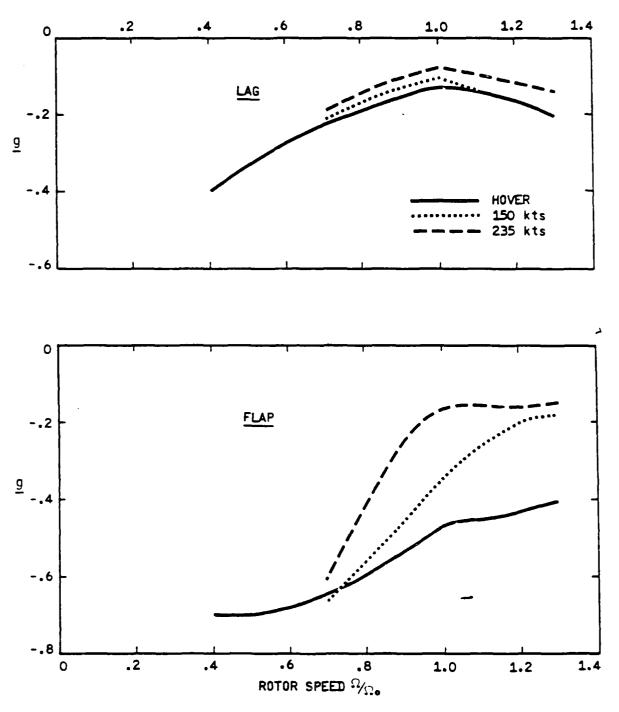
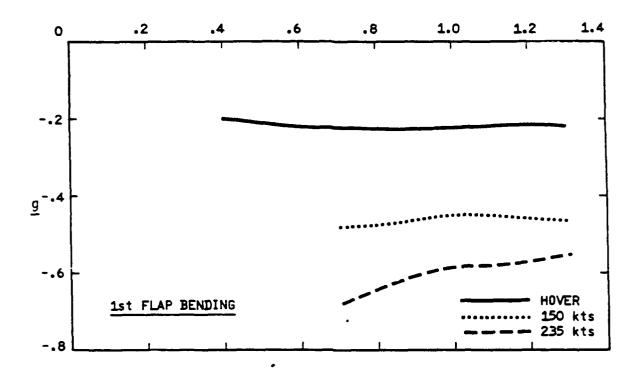



Figure J-3. CMRB modal damping versus rotor speed (sheet 1 of 4).

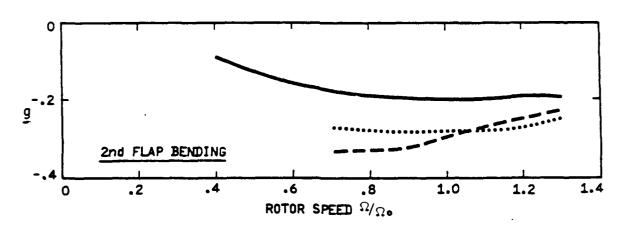


Figure J-3. CMRB modal damping versus rotor speed (Sheet 2 of 4).

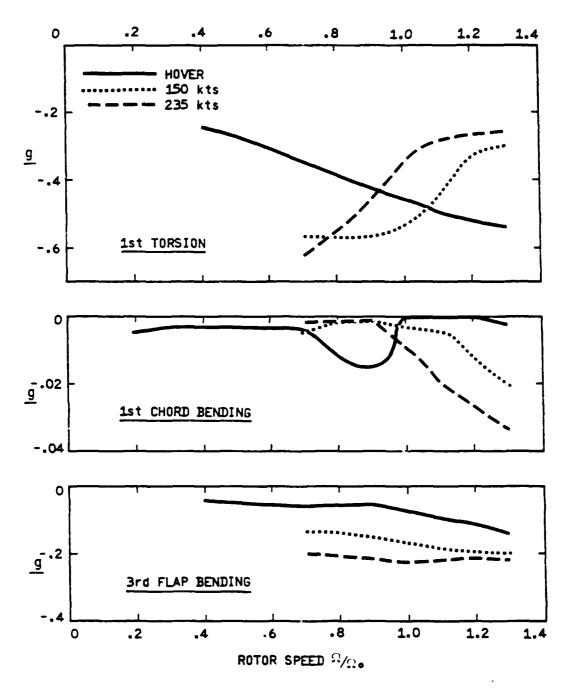
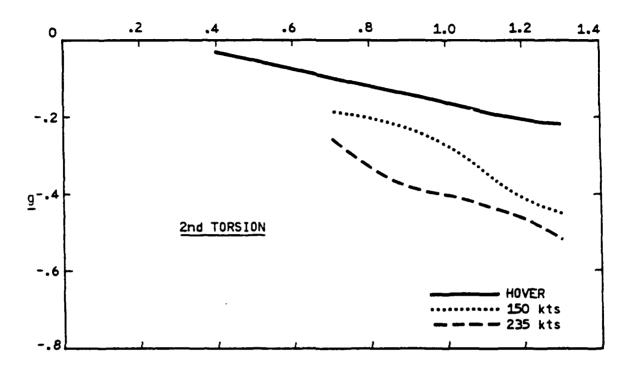



Figure J-3. CMRB modal damping versus rotor speed (Sheet 3 of 4).

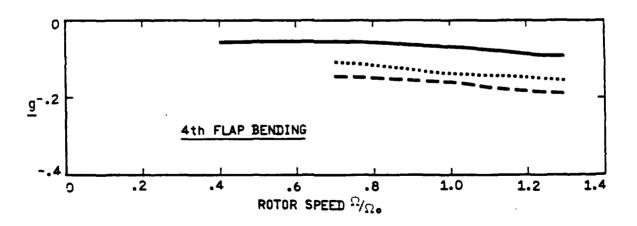


Figure J-3. CMRB modal damping versus rotor speed (Sheet 4 of 4).

TABLE J-1. CMRB DAMPED NATURAL FREQUENCIES, 3.5 g, $0_{3/4} = 12^{\circ}$, Hover

			Fred	Frequency (cyc/rev)	rev)		
Root No	116 rpm	202 rpm	260 rpm	289 rpm	318 rpm	347 rpm	376 rpm
-	0.667	00\$00	0.450	0.432	0,431	0.426	0.421
7	1.189	1.194	1.214	1.22.1	1.191	1.174	1.166
3	3,163	2,830	2.767	2.749	2,740	2,735	2, 724
4	6.731	5.028	4.470	4.256	4.107	3,985	3.849
2	9.001	5.447	4.771	4.654	4.566	4.489	4.424
9	12.24	8.256	6, 953	6, 388	5.942	5.568	5,256
7	15.23	190.6	7,525	7, 121	608*9	6.534	6.250
∞	19.12	12.06	9,561	8.733	8.015	7.458	7.049
6	20.98	12.46	10.65	10.06	9.593	9.217	8.907

TABLE J-2. CMRB DAMPED NATURAL FREQUENCIES, 3.5 g, $\theta_{3/4} = 12^{\circ}$, V = 150 KNOTS

			Frequency (cyc/rev)	:yc/rev)		
Root No	202 rpm	260 rpm	289 rpm	318 rpm	347 rpm	376 rpm
1	0.484	0.430	0.412	0.409	0.412	0.417
2	1.254	1.299	1.304	1.260	1.213	1.172
60	2.876	2,782	2,736	2.711	2,684	2.657
4	5.008	4.575	4.450	4.428	4.381	4.303
۲C	965*9	5.796	5.618	5.568	5,435	5.168
9	8.404	7.055	6.455	6.017	5.645	5.328
7	8.923	7.415	7.042	6.775	6.612	6.436
&	12.44	9.926	9, 188	8.809	8,868	8.664
6	12.50	10.73	10.13	9.641	9.248	8.928

TABLE J-3. CMRB DAMPED NATURAL FREQUENCIES, 3.5 g, $\theta_{3/4}$ = 12° V = 235 KNOTS

			Frequency (cyc/rev)	cyc/rev)		
Root No	202 rpm	260 rpm	289 rpm	318 rpm	347 rpm	376 rpm
1	0.497	0.434	0.421	0.428	0.435	0.434
7	1.266	1.287	1.262	1.201	1.151	1.124
3	2.881	2,755	2.702	2.661	2.629	2.603
4	5.017	4.691	4.592	4.476	4,389	4.328
2	7.537	066*9	6.492	6.049	5.668	5,345
9	8.467	7.110	902.9	6.261	5.875	5,554
7	8.850	7.387	7.090	6.853	6.634	6.460
∞	12,53	10.74	10.13	9.648	9.269	8,936
6	12.74	10.87	10.93	1	10.42	10.07

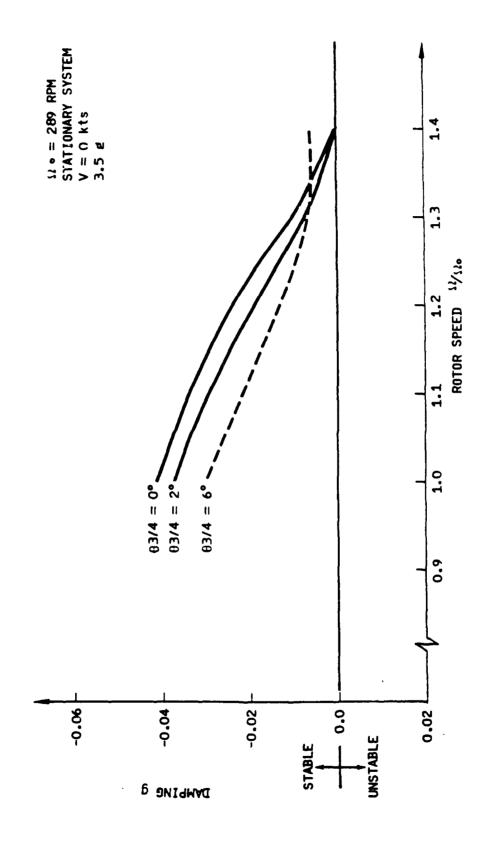


Figure J-4. Advancing whirl mode damping.

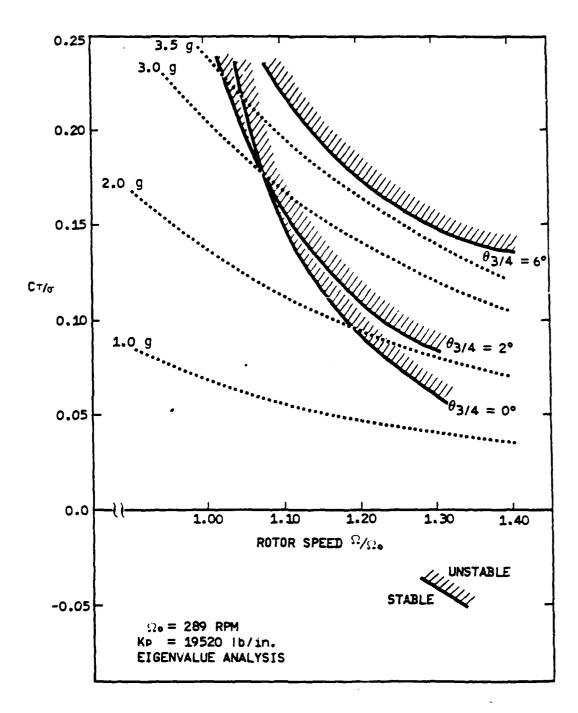


Figure J-5. CMRB advancing lag mode stability boundaries.

blade. Reference J-1 shows that the linear eigenvalue analysis is conservative compared to the four blade transient analysis.

A transient analysis was run for the most severe advancing lag mode case $(\theta_3/4 = 0 \text{ degree}, N_z = 3.5_g, 376 \text{ rpm})$. An initial chordwise excitation was applied to one of the blades and the decay of the mast bending response was measured to calculate damping. The results shown in Figure J-6 indicate that the condition is stable with a modal damping of g = -0.033. It is, therefore, concluded that the advancing lag mode stability boundary is greater than 130 percent N_R .

For the mechanical instability (ground resonance) analysis of the AH-64A with the composite main rotor blades, the most important parameter is the blade first moment about the lag hinge. As shown in Table J-4, both the blade weight and first moment are less for the CMRB than for the metal main rotor blade. Since the lead-lag dampers and airframe are unchanged for the CMRB, the reduced blade first moment will give increased ground resonance stability margins. Therefore, the AH-64A with composite main rotor blades should have at least as good ground resonance stability as that demonstrated with the metal blades.

In summary, the advancing whirl mode stability boundary is above 130 percent N_R for all load factors and collective pitch settings, the advancing lag mode stability boundary is above 130 percent N_R , there are no flutter or divergence limitations within the operating spectrum of N_{DL} (130 percent N_R) and 115 percent of V_{DL} , and mechanical stability margins are similar to those of the AH-64A with the metal blades. With respect to the torsional stability of the main rotor drive system, the only difference in the system with the CMRB installed from that with the metal blade installed is a minor reduction in rotor inertia from 0.829 slug-feet² for the metal blades to 0.783 slug-feet² for the CMRB. Hence, both systems are anticipated to perform similarly.

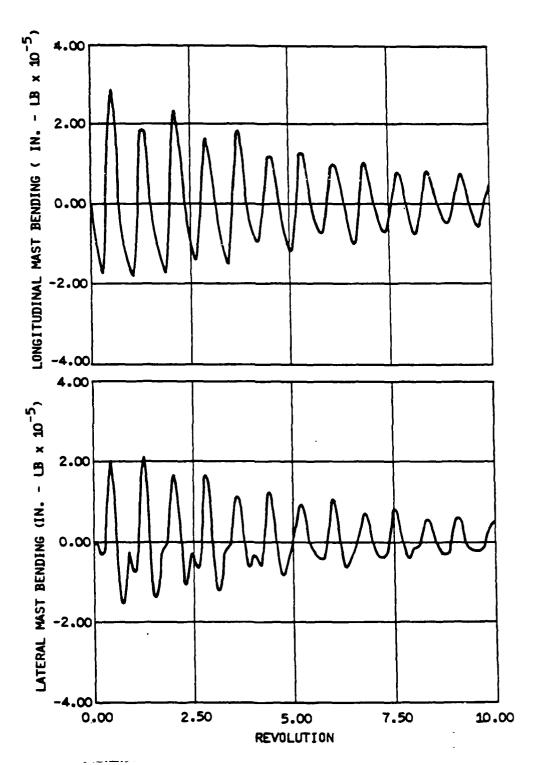


Figure J-6. Main rotor mast bending $N_z = 3.5g$, $\theta_3/4 = 0$ degree, 376 rpm.

TABLE J-4. MAIN ROTOR BLADE WEIGHT AND MOMENT COMPARISON

	Metal Blade	CMRB	% Change
Weight (lb)	154.3	147.3	-4.5
σ _ξ * (in-lb)	18,980	17,940	-5.5
I _i (slug-ft ²)**	1,017	993	.2.4

^{*} σ_{ξ} = Blade first moment about the lag hinge (r = 34.5 inches)

^{**}I1 = Rotor blade polar moment of inertia about rotor shaft

APPENDIX K RELIABILITY ASSESSMENT

K-2

Reliability assessment of the CMRB is based on a Failure Modes, Effects, and Criticality Analysis (FMECA) that considers degradation of reliability that may occur during subassembly manufacturing processes, final blade assembly manufacturing processes, and in-service operations. The types of defects contributing to reliability degradation, the effects on blade and air vehicle performance (as determined by the FMECA), and compensating provisions wherein these defects can or are being ameliorated are discussed below.

The significant contributors to reliability degradation are hazards induced during air vehicle operation and maintenance, including thermal cycling, shock, vibration, aircraft fluids, rotor downwash (induced airborne particles and foreign object damage), rocket debris, rough handling, impact with terrain objects, maintenance, and contact with work stands and ground vehicles. Design allowables tend to compensate for some of these hazards and the resultant degradation may be readily visible. However, the resultant degradation due to those hazards, but not readily visible, can only be determined by an effect and adequate nondestructive evaluation or nondestructive test technique. Based on results of previous testing and for equivalent material thickness, the order of damage tolerance is as follows. Kevlar is the most damage tolerant, graphite is much less damage tolerant, and fiberglass is intermediate. Sandwich construction has poorer impact resistance than monolithic constructions and tends to suffer reductions in strength due to subsurface damage.

Being made primarily of advanced composite materials, corrosion as a failure mode will be essentially non-existent for the CMRB. Of the metal parts that could be subject to corrosion, the 304 CRES tip weight is passivated, the A356-T6 aluminum aft tip weight and 6061 T4 aluminum adjustable weights are chromic acid anodized, tungsten adjustable weights are etched and primed, 17-4 PH bushings and forward tip weight are passivated, and the 316 CRES balance rods are wiped with MEK prior to being embedded in the epoxy matrix.

Delamination of the Kevlar plies can occur during in-service operations resulting in loss of blade performance and possible excessive vibration. The FMECA has determined that 20 percent of the failure rate is attributed to delamination with resulting reliability degradation. These delaminations can be detected using non-destructive inspection techniques.

While porosity or voids within the elements themselves should not occur because rigid inspection techniques would have discovered them prior to assembly, porosity or voids can occur between any of the blade components

during the temperature-pressure curing process. Porosity or voids contribute approximately 4 percent to the total failure rate of the CMRB, according to the FMECA. The remoteness of their occurrence is based on the nondestructive inspection (NDI) and/or nondestructive evaluation (NDE) techniques used on the CMRB after its initial molding, or after in-service repair.

Resin-starved areas result in delamination as well as an upset of the fiber/
resin density ratio. Resin-rich areas result in an upset of the desired fiber/
resin density ratio. Both resin-starved or resin-rich areas can contribute
to blade imbalance and loss of effective blade performance. These conditions
can only occur during manufacturing, not during in-service operations, and
would be discovered during inprocess control. The resin-rich or resinstarved defect is not considered as a failure mode in the FMECA since it
would be a failure mechanism (cause) of a delamination failure mode.
Unbonded areas defects would be prevalent only during the final manufacturing phase. Debonding can occur during the final manufacturing process as
well as in-service operations. Reliability degradation caused by debonding
results in degraded blade performance and excessive blade vibration thus
affecting air vehicle performance. Debonding represents about 20 percent
of the failure rate as determined by the FMECA. Bond line consistency will
prevent debonding during in-service operations.

Rain erosion and ultraviolet (UV) radiation contribute greatly to environmental degradation of CMRB reliability. Sand and dust can be classified as FOD-induced erosion, as in maintenance-induced damage due to tool marks or tool drops. A leading edge erosion strip tends to protect against erosion. All trimmed edges are capped to prevent water absorption. The blade is painted with an epoxy primer and a urethane top coat to preclude degradation of the Kevlar and epoxy from UV radiation.

Three areas of the blade that are candidates for repair are the leading edge, the multitubular spar area, and the aft portion of the blade. The root end region is considered to be not repairable. The thermoplastic elastomer (Estane) leading edge erosion material may be repaired on the helicopter by:

- Repair local pitting
 use kit furnished by manufacturer
- Remove entirely, and bond on new Estane strip

Cut away and repair local area

The repair technique for the multitubular spar area is anticipated to include trimming away damaged material, scarfing the blade skin around the hole, emplacing spar tube repair segments, applying a 0-degree longo/±45-degree composite skin patch, bonding the patch in place with heat and pressure, and sanding and painting the area. The repair technique for the aft portion of the blade will be to trim away the damaged skin and underlying honeycomb. A small repair area will be filled with glass milled fiber/epoxy paste—a piece of honeycomb will be cut to fit and bonded into larger damaged areas. The procedure for patching and the skill required will be similar to that for the spar area. Tip weight adjustment may be required to compensate for the location and weight of the repair patches.

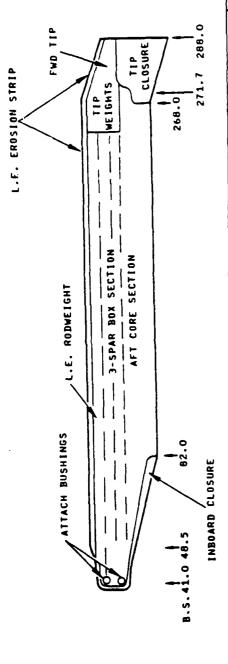
HHI plans to estimate the damage that can be safely repaired and then define the skin, longo, and spar repair materials and adjesives that are necessary to perform the repair. HHI plans to select one CMRB, make a repair to it in each of the two zones, and subject the blade to a midspan fatigue test to evaluate the effectiveness of the repair during the full qualification effort.

A failure reporting system based on the Army-developed RAM/LOG (Reliability Availability Maintainability/Logistics) data collection methodology (AMSAV-L form 1249, 1250, 1252, 1266) will be instituted with the beginning of flight test. These forms will be used to record all failures that occur during the test program. Then a qualitative reliability assessment will be made based on the data that results. This assessment will then be evaluated against the comparative reliability value of the metal blade that is currently used on the AH-64A flight vehicles.

APPENDIX L MAINTAINABILITY ASSESSMENT

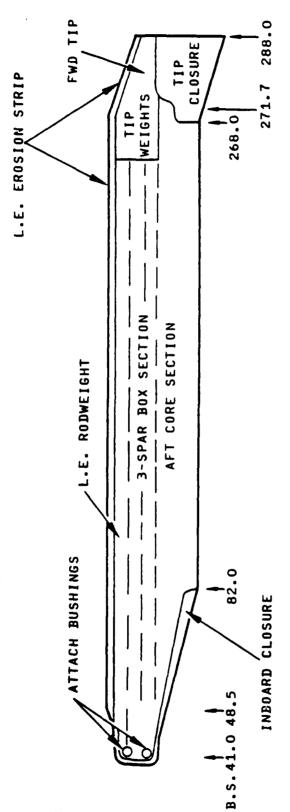
The Maintainability Engineering Analysis (MEA) for the CMRB addressed all the failure modes and effects data that are reported in the Reliability Assessment section as representing unscheduled maintenance items. The scheduled maintenance part of this MEA includes both daily and phased inspection. Phased inspection includes routine preparatory cleaning and selected preventive maintenance tasks. This MEA for Aviation Unit Maintenance (AVUM), Aviation Intermediate Maintenance (AVIM), and Depot Maintenance (DEPOT) predicts maintenance man-hours per flight hour as listed in Table L-1.

The repair limits and maintenance organization levels that are listed in Table L-2 are based on design criteria and stress evaluations. The repair level is considered to be very conservative inasmuch as many of the minor damage listings could be downgraded to the next lower maintenance level from AVIM to AVUM. In fact, because of the slow damage propagation rates of the CMRB, many repairs could receive temporary AVUM repairs and be operated for an additional 10 hours, or until a scheduled preventative maintenance check.


The repair procedures that are outlined in Table L-3 address the major and minor damage listed in Table L-2. While HHI's Maintainability Engineers consider these repair procedures to be within the current State-of-the-Art, it is realized that the aerospace industry is putting increased emphasis on composite structures and their repair causing the current state-of-the-art to change significantly.

As new technology becomes available, it will be incorporated into the repair procedure. During the CMRB production program it is planned to further refine the depot level repair procedures.

TABLE L-1. MAINTENANCE MAN-HOURS/FLIGHT HOUR


Level	Scheduled	Unscheduled	Total
AVUM	0.00898	0.0200	0.02898
AVIM	0.01473	0.0125	0.02723
DEPOT	0.00697	_	0.00697
	0.03068	0.0325	0.06318

/ TABLE L-2. CMRB DAMAGE LIMITS AND MAINTENANCE LEVELS

Repair Area	Minor Damage	Limit	Repair Level	Major Damage	Limit	Repair Level
L.F. Erosion Strip	Cuts, nicks, missing	4 in	AVUM	AVUM More than 4 in	None	AVIM
L. Edge Back Strip	Cuts, nicks	4 in	AVUM	AVUM More than 4 in	34 in	AVIM
L. Edge Rod Weight	Cut thru	4 Rods	AVIM	4 in to . in	7 in	AVIM
L. Edge Debonding	Crack - 3 in	4 in	AVIM	More than 4 in	•	DEPOT
Attach Bushings	Scratches	None	AVUM	AVUM Loose/cracked	•	DEPOT
BS 37, 5 to 48	Nicks, finish	None	AVUM	AVUM Cracks/Debond	TBD	DEPOT
Inboard Clusure	Debond/Delam	6 in	AVIM	Replace	None	AVIM
Spar Box 1, 2, 3; BS 49 to 271	Debond/Delam/Hole	1 in	AVIM	Crack*	1 Spar/1.5 in	AVIM
Aft Core Section	Debond/Delam	l in	AVIM	Holes/Damage	4 in x 10 in long	AVIM
Trail Edge	Debond/Delam	6 in	AVUM	AVUM 24 in - 48 in	60 in	AVIM
filinge Tab	Cracked	1 Section 11.3 in	AVIM	To 8 Sections	None	AVIM
Tip Weight Area	None	1	•	Loose Stationary		DEPOT
Tip Weight Arca	Loose Adj Wgts	ı	AVUM	,	•	
Forward Tip	Erosion	Minor	AVIM	Major		AVIM
Forward Tip	Hole/Delam	4 sq in	AVIM	Remove & Replace		DEPOT
Tip Closure	Hole/Delam	12, 25 sq in	AVIM	Remove & Replace		DEPOT

TABLE L-3. CMRB REPAIR PROCEDURES

Area	Damage	Repair
L. E. Polyurethane Erosion Strip	Minor cuts, nicks, 4 inches of strip missing.	Clean area, remove loose/frayed strip material. Fill with material from repair kit. Clean adhesive from area where erosion strip was removed, radius corners, prepare patch from like material, fit with minimum E. Dist. Bond in place and fill gaps from kit material.
	Major - More than 4 inches of strip missing.	Remove loose or damaged erosion strip material. Clean adhesive, repair any backstrip damage. Prepare and fit, bond in place, heat if required. Fill edge gaps with kit material.

TABLE L-3. CMRB REPAIR PROCEDURES (CONT)

Area	Damage	Repair
L.E. Backstrip	Minor - cuts, nicks	Sand nicks and fill with epoxy. Cure, sand to fair with adjacent material. Patch with erosion strip kit.
	Major backstrip eroded through or missing.	Sand with 320 WD paper. Fair to undamaged material. Lay in repair cloth. Epoxy, cure, sand smooth, and fair. Prepare erosion strip to overlap, repair ends 3 inches and bond in place. Fill butt end with kit material.
L.E. Rodweight	Minor - 4 rods cut through (TR)* Major - Same procedure	Remove erosion strip 4 inches past damage, remove backstrip I inch past damage, radius damage, fill with epoxy material EA 960 filler, cure and blend. Cover area with backstrip Kevlar 49 material and bond using adhesive EA 934NA cure, blend, and install erosion strip using adhesive A1503B1A1343B Estane cement and accelerator, fill edge gaps with kit material.
L. E. Edge	Minor - 3 inch crack. (TR)* Major	Clean air dry fill crack with EA 934NA and use. Depot specialized repair scrap potential 80 percent.

*(TR) designates temporary repair - permanent repair may be delayed up to 10 flight hours.

TABLE L-3. CMRB REPAIR PROCEDURES (CONT)

Area	Damage	Repair
Attach Bushings	Minor scratches	Polish and measure for limits using inside measuring micrometer.
	Major fretted, cracked loose	Depot - specialized repair part.
37. 5 to 48	Minor - scratches, nicks	Blend and refinish.
	Major - cracks delamination	Depot specialized repair scrap rate 85 percent
Inboard Closure	Minor - debonded/delam Major - TE crushed	Rebond using EA 934NA. Standard practices apply. Remove with router. Bond repair part in place with EA 934NA, fill and blend, refinish
Spar Box No. 1, 2, 3 STA 49 to 271	Minor - debond/delam 1 inch hole	Drill hole to accommodate hypo needle and fill void with EA 934NA. Apply pressure to surface to squeeze out excess adhesive. Apply pressure and heat as required. Accomplish flush plug patch using EA 934NA. Standard practices apply.
	Major cracked outer cover, doubler 1.5 inch limit/spar only	Rout damage only. Apply patch of Kevlar 49 with EA 934NA (Maintain filament direction), cover damage only may be expanded to 2.5 inches (No spar, no doubler damage).

TABLE L-3. CMRB REPAIR PROCEDURES (CONT)

Area	Damage	Repair
Aft Core Section	Minor - one face sheet debonded 6 inches	Rout out debonded face sheet as required until bonded core/sheet is established. Prepare Kevlar sheet stock, fit and clean. Apply EA 934NA to both sheet and core contact surface. Install. Apply pressure and heat if required, blend surface. Remove finish to allow for 3 inch doubler patch overlap. Doubler patch of same materials and adhesive. Apply lightning mesh with 0.5 inch overlap. Apply lightning mesh with 0.5 inch overlap. Apply doubler over top, apply poly sheet to insulate pressure pad, apply pressure pads, apply pressure pads, apply sheet - blend as required and refinish.
Aft Core Section	Major - holes through or damage to core and both face sheets.	Rout out damage from both face plates, rout out damaged core, cut replacement core. Clamp flush face plate and doubler in place. Install core (dry) and rout contour. Fit top plate, check contours, and cut lightning mesh, disassemble, and clean. Apply EA 934NA to all contact surfaces and assemble. Apply filler, poly sheet, and pressure pads, remove poly sheet. Blend as required and refinish. Direction filaments apply.

TABLE L-3. CMRB REPAIR PROCEDURES (CONT)

Area	Damage	Repair
Trailing Edge	Minor - delamination (TR)*	Air clean, inject EA 934NA. Apply poly sheet. Apply clamp blocks and clamp, cure, remove clamps, blocks, and sheet. Sand to blend and refinish.
	Major - delamination extended 60 inches, crushed trail edge	Same as above. Rout out damage, scarf repair longo 5-to-1 at both ends. Scarf longo at undamaged ends. Apply adhesive and install. Fabricate core and face sheets. Fabricate doublers, cut lightning mesh. Assemble dry for fit
		contact surfaces. Assemble, apply poly sheet, apply pressure and heat if required. Cure - remove heat, remove pressure and poly sheet. Apply filler EA 960F, cure, sand to blend, and refinish.
Hinge Tab	Minor crack or damaged to	The hinge tab is a repair part and is provided in section lengths of 11.3 inches. Repair applies to both major and minor.

*(TR) designates temporary repair - permanent repair may he delayed up to 10 flight hours.

TABLE L-3. CMRB REPAIR PROCEDURES (CONT)

Area .	Damage	Repair
	Major - 8 sections or 90 inch replacement	Rout damaged tab sections to remove, being careful not to remove material from trailing edge. Clean surface and bond repair in place, block, and clamp. Heat if required. Remove clamps and blocks, clean, and blend overrun. Bend tab using special tool to original setting and refinish.
Tip Weight Area	Major - loose stationary weights	Depot action only.
Tip Weight	Minor - loose adjustment weights	Tighten mounting and adjusting bolts.
Forward Tip	Minor - erosión	Fill pits with EA 960F, sand smooth with 320 WD, and refinish.
Forward Tip	Major - delamination	Air clean - apply EA 934NA and pressure bond cure - remove pressure pads, clean
-	Hole to 40 sq in	and refinish. Rout out damage, fill void with foam, patch with Kevlar 49 and EA 934NH, fair with EA 960F, and blend - refinish.
Aft Tip Closure	Minor - delamination Hole to 12.25 sq in (TR)*	Same as repair No. 9.

*(TR) designates temporary repair - permanent repair may be delayed up to 10 flight hours.

Because of its high safety factor and slow damage propagation rate, the CMRB is able to withstand minor damage while remaining serviceable. However, a temporary repair that is essentially cosmetic will keep out dirt and moisture and retain the necessary aerodynamic shape until it is convenient to make a permanent repair. Repair man-hours for those items listed as minor are estimated to require 1.6 to 2.4 man-hours plus cure time of 2 hours at ambient temperature of 77°F, or 30 minutes with supplemental heat. Major damage repairs at the AVIM level are estimated to require an average of 7 man-hours. In addition, the cure times given above must be added.

Depot level repairs were not estimated and will require specific engineering for custom repair designs.

APPENDIX M REFERENCES

- I-1. Military Standard Weight and Balance Data Reporting Forms for Aircraft (Including Rotorcraft), MIL-STD-1347A Part II, 30 September 1977.
- J-1. Silverthorn, L.J., Childers, H.M., and Neff, J.R., Preliminary Aeroelasticity and Mechanical Stability Report YAH-64 Advanced Attack Helicopter, Hughes Helicopters, Inc. Report No. 77-X-8001, June 1976.

APPENDIX N

DRAWING LIST FOR THE COMPOSITE MAIN ROTOR BLADE FOR THE AH-64A HELICOPTER

N-2

Drawing Number	Revision	Title
7-311412500	R	Blade
7-311412508	D	Blade Ordinates
7-311412509	A	Lines Definition
7-311412511	M	Closure, Inboard
7-311412512	E	Door
7-311412514	D	Weight
7-311412515	С	Bolt
7-311412516	E	Erosion Strip
7-311412517	F	Bracket Assembly
7-311412530	G	Weight Assembly
7-311412531	С	Spar Tube No. 1
7-311412532	В	Spar Tube No. 2
7-311412533	С	Spar Tube No. 3
7-311412536	J	Longo, T.E.
7-311412537	L	Cap Assembly
7-311412538	Н	Doubler Assembly, Skin
7-311412539	E	Doubler, Cap
7-311412541	F	Wedge, Inboard
7-311412542	к	Wedge, Spar Cap
7-311412543	н	Core Assembly, Tip
7-311412545	D	Skin
7-311412546	G	De-icer Blanket
7-311412547	E	Lightning Screen
7-311412548	J	Weight, Forward, Tip
7-311412549	к	Weight, Aft, Tip
7-311412550	B	Tip Weight, Leading Edge

Drawing Number	Revision	Title
7-311412551	_	Rod
7-311412553	A	Backing Strip
7-311412554	_	Backing Strip, Tip
7-311412556	С	Bracket Assembly
7-300412557	G	Root End Dam
7-311412559	A	Cap, Leading Edge
7-311412561	E	Hinge, Trim Tab
7-311412563	G	Plate, Face
7-311412567	F	Plate Clevis
7-311412568	В	Bushing
7-311412569	С	Inner Skin
7-311412570	A	Absorber Assembly
7-311412572	D	Core, Aft
7-311412573	D	Channel
7-311412574	G	Core Assembly, Aft
7-311412575	В	Filler Doubler
7-311412576	С	Closure, Outboard
7-311412577	_	Strip, Fairing
7-311412581	В	Target Set